Abdullah, W., Elmasry, A., & Tolba, A. (2024). Hybrid attention-enhanced deep learning for accurate hourly energy consumption forecasting.
Information Sciences with Applications, 3, 74-83.
https://doi.org/10.61356/j.iswa.2024.3314
Ahmed, I., Khan, M. A. U. H., Islam, M., Hasan, M. S., Jakir, T., Hossain, A., Abed, J., Hasanuzzaman, M., Shatyi, S. S., & Hasnain, K. N. (2025). Optimizing Solar Energy Production in the USA: Time-Series Analysis Using AI for Smart Energy Management.
Journal of Posth umanism, 5(6), 3396-3423.
https://doi.org/10.63332/joph.v5i6.2457
Alexakos, A., Amaxilatis, D., & Zaroliagis, C. (2022). Photovoltaic energy production forecasting and operational analytics: a real-world study. In 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (pp. 439-444). IEEE.
An, Y., Dang, K., Shi, X., Jia, R., Zhang, K., & Huang, Q. (2021). A probabilistic ensemble prediction method for PV power in the nonstationary period.
Energies, 14(4), 859.
https://doi.org/10.3390/en14040859
Araya, F., Long-Ha, D., Eddine, M. D., & Al Shakarchi, F. (2023, October). Optimal Energy Management System Using Probabilistic Day-ahead Forecasting. In 2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE) (pp. 1-5). IEEE.
Balal, A. T., Jafarabadi, Y. P. T., Demir, A. T., Igene, M. T., Giesselmann, M. T., & Bayne, S. T. (2023). Forecasting solar power generation utilizing machine learning models in Lubbock.
Emerging Science Journal, 7(4), 1052-1062.
https://doi.org/10.28991/ESJ-2023-07-04-02
Bracale, A., Carpinelli, G., & De Falco, P. (2016). A probabilistic competitive ensemble method for short-term photovoltaic power forecasting.
IEEE Transactions on Sustainable Energy, 8(2), 551-560.
https://doi.org/10.1109/TSTE.2016.2610523
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation.
Peerj computer science, 7, e623.
https://doi.org/10.7717/peerj-cs.623
Di Leo, P., Ciocia, A., Malgaroli, G., & Spertino, F. (2025). Advancements and Challenges in Photovoltaic Power Forecasting: A Comprehensive Review.
Energies, 18(8), 2108.
https://doi.org/10.3390/en18082108
Fan, Y., Ma, Z., Tang, W., Liang, J., & Xu, P. (2024). Using crested Porcupine optimizer algorithm and CNN-LSTM-Attention model combined with deep learning methods to enhance short-term power forecasting in PV generation.
Energies, 17(14), 3435.
https://doi.org/10.3390/en17143435
Fraga-Hurtado, I., Gómez-Sarduy, J. R., García-Sánchez, Z., Hernández-Herrera, H., Silva-Ortega, J. I., & Reyes-Calvo, R. (2025). Advanced Multivariate Models Incorporating Non-Climatic Exogenous Variables for Very Short-Term Photovoltaic Power Forecasting.
Electricity, 6(2), 29.
https://doi.org/10.3390/electricity6020029
Hapsari, G. I., Munadi, R., Erfianto, B., & Irawati, I. D. (2025). Feature Selection Using Pearson Correlation for Ultra-Wideband Ranging Classification.
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 9(2), 209-217.
https://doi.org/10.29207/resti.v9i2.6281
Izdebski, W., & Kosiorek, K. (2023). Analysis and evaluation of the possibility of electricity production from small photovoltaic installations in Poland.
Energies, 16(2), 944.
https://doi.org/10.3390/en16020944
Jailani, N. L. M., Dhanasegaran, J. K., Alkawsi, G., Alkahtani, A. A., Phing, C. C., Baashar, Y., Capretz, L. F., Al-Shetwi, A. Q., & Tiong, S. K. (2023). Investigating the power of LSTM-based models in solar energy forecasting. Processes, 11(5), 1382.
Jakoplić, A., Franković, D., Havelka, J., & Bulat, H. (2023). Short-term photovoltaic power plant output forecasting using sky images and deep learning.
Energies, 16(14), 5428.
https://doi.org/10.3390/en16145428
Liu, C., Li, M., Yu, Y., Wu, Z., Gong, H., & Cheng, F. (2022). A review of multitemporal and multispatial scales photovoltaic forecasting methods.
IEEE access, 10, 35073-35093.
https://doi.org/10.1109/ACCESS.2022.3162206
Mazen, F. M. A., Shaker, Y., & Abul Seoud, R. A. (2023). Forecasting of solar power using GRU–temporal fusion transformer model and DILATE loss function.
Energies, 16(24), 8105.
https://doi.org/10.3390/en16248105
Praveenraj, D. D. W., Madeswaran, A., Pastariya, R., Sharma, D., Abootharmahmoodshakir, K., & Dhablia, A. (2024). Machine learning integration for enhanced solar power generation forecasting. In
E3S Web of Conferences (Vol. 540, p. 04007). EDP Sciences.
https://doi.org/10.1051/e3sconf/202454004007
Rezvani, Z., Rezvani, F., & Arslan, S. (2022). Designing, Simulating and Technical Analysis of a 2 MW On-grid Photovoltaic System for Agricultural Applications.
Biomechanism and Bioenergy Research, 1(2), 1-6.
https://doi.org/10.22103/bbr.2022.20681.1036
Salman, D., Direkoglu, C., Kusaf, M., & Fahrioglu, M. (2024). Hybrid deep learning models for time series forecasting of solar power.
Neural Computing and Applications, 36(16), 9095-9112.
https://doi.org/10.1007/s00521-024-09558-5
Sharma, J., Soni, S., Paliwal, P., Saboor, S., Chaurasiya, P. K., Sharifpur, M., Khalilpoor, N., & Afzal, A. (2022). A novel long term solar photovoltaic power forecasting approach using LSTM with Nadam optimizer: A case study of India. Energy Science & Engineering, 10(8), 2909-2929.
Sleiman, A., & Su, W. (2024). Combined K-means clustering with neural networks methods for PV short-term generation load forecasting in electric utilities.
Energies, 17(6), 1433.
https://doi.org/10.3390/en17061433
Stoliarov, O. (2024). Big Data technologies in the process of forecasting electricity generation from solar photovoltaic power plants.
Вісник Черкаського державного технологічного університету. Технічні науки, 29(2). 79-92.
https://doi.org/10.62660/bcstu/2.2024.79
Suyambu, M. R., Vishwakarma, P. K., & Shrivastava, V. (2024, December). Improving Energy Efficiency Through Machine Learning-Based Load Forecasting in power systems. In
2024 International Conference on Communication, Control, and Intelligent Systems (CCIS) (pp. 1-6). IEEE.
https://doi.org/10.1109/CCIS63231.2024.10931928
Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance.
Climate research, 30(1), 79-82.
https://doi.org/10.3354/cr030079
Wu, Y., Gong, G., & Zhu, C. (2024, September). Electricity demand forecasting based on hybrid BiGRU-BiLSTM model prediction framework with dual time domain decomposition. In
2024 5th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE) (pp. 789-793). IEEE.
https://doi.org/10.1109/ICBASE63199.2024.10761991
Yadav, S., Rajput, P., Balasubramanian, P., Liu, C., Li, F., & Zhang, P. (2025). Machine learning-driven prediction of biochar adsorption capacity for effective removal of Congo red dye.
Carbon Research, 4(1), 11.
https://doi.org/10.1007/s44246-024-00168-3
Zhao, Z., Zhai, M., Li, G., Gao, X., Song, W., Wang, X., Ren, H., Cui, Y., Qiao, Y., & Ren, J. (2023). Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China.
BMC Infectious Diseases, 23(1), 71.
https://doi.org/10.1186/s12879-023-08025-1