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ABSTRACT 

This study presents a significant advancement in short-term photovoltaic 

(PV) power forecasting through the development and validation of a 

simple yet highly effective LSTM-based model tailored to address the 

operational demands of renewable energy integration. By harnessing a 

meticulously curated dataset and employing rigorous feature selection, 

the model achieved exceptional performance metrics an R² score of 

0.9212 and an RMSE of 0.0650 on unseen data outperforming 

benchmark models such as CatBoost and GBR. These outcomes affirm 

the model's capacity to capture temporal dependencies in PV generation 

data while maintaining computational efficiency, making it well suited 

for real-time energy management applications. However, limitations 

such as dependence on high-quality input data and untested resilience 

under extreme weather conditions suggest areas for refinement. Future 

research could enhance the model by incorporating probabilistic 

forecasting, lightweight attention mechanisms, or transfer learning to 

improve adaptability across diverse geographic and climatic contexts. 

Ultimately, this work contributes a robust, practical tool to the evolving 

landscape of smart grid technologies, supporting the global transition 

toward sustainable energy systems with improved forecasting precision 

and scalability. 
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INTRODUCTION 

Accurate forecasting of photovoltaic (PV) 

power generation could be fundamental to 

modern energy network management and the 

optimal integration of renewable energy sources. 

It mitigated the uncertainties associated with 

atmospheric variability, thereby enabling more 

effective planning for energy production, 

distribution, and storage. In smart energy systems 

that rely heavily on renewable energies, reliable 

forecasting enhanced grid stability and reduced 

operational costs (Liu et al., 2022; Rezvani et al., 

2022). 

The economic impact of precise PV forecasting 

could also be considerable. For example, in South 

Korea, the implementation of accurate 

forecasting models has contributed to reduce 

production fluctuations and operational costs, and 

ultimately increased the revenue of solar power 

plants. Furthermore, during peak demand 

periods, accurate forecasting’s enable power 

plants to inject more energy into the grid, thereby 

improving profitability. In some cases, such as 

energy storage systems, accurate forecasting has 

been increased profitability up to 20% (Araya et 

al., 2023). In Poland, forecasting models 

predicted that PV generation would reach up to 

31,219 GWh by 2028, potentially reduced 

national energy costs (Izdebski & Kosiorek, 

2023). Moreover, big data-based forecasting 

models have been reported to reduce energy 

storage costs by approximately 15% (Stoliarov, 

2024). These findings collectively are 

underscored the strategic importance of advanced 

forecasting to achieve operational efficiency and 

economic viability in renewable energy systems. 

In recent decades, solar energy has emerged as 

a key driver in the transition toward sustainable 

and renewable power systems. With rising global 

energy demands and growing concerns over 

greenhouse gas emissions, PV systems have 

gained widespread adoption as clean, scalable, 

and increasingly cost-effective energy sources. 

However, the intermittent and weather-dependent 

nature of solar generation have presented 

significant challenges for ensuring a reliable 

energy supply. Therefore, accurate forecasting 

would be essential not only for operational 

planning but also for maintaining grid reliability 

and economic balance (Di Leo et al., 2025; Fan et 

al., 2024). As such, solar power forecasting has 

become a critical tool for both utilities and policy-

makers in the deployment of intelligent energy 

management systems (Balal et al., 2023; 

Praveenraj et al., 2024). 

In parallel, artificial intelligence (AI)-enabled 

forecasting methods have promised results in 

various regional implementations. For example, 

in Greece, AI-driven forecasting systems have 

significantly improved power distribution 

efficiency and predictive maintenance, leading to 

increase energy output and reduce operational 

costs (Alexakos et al., 2022). These outcomes 

could reinforce the strategic potential of AI-based 

forecasting in supporting reliable and cost-

effective energy transitions. 

Despite recent advancements in solar 

forecasting methodologies, several limitations 

are persisted that included, reducing predictive 

accuracy under highly variable weather 

conditions, dependence on high-quality input 

data, and the computational burden associated 

with many advanced algorithms (Sleiman & Su, 

2024). Among the various approaches, deep 

learning models—particularly long short-term 

memory (LSTM) networks—have demonstrated 

significant potential in capturing the complex 

temporal dependencies inherent in PV generation 

data (Fraga-Hurtado et al., 2025). Nevertheless, 

the development of models that are both locally 

adaptable and computationally efficient remains 

an open research challenge  (Jakoplić et al., 

2023). The aim of this study is to address this gap 

by proposing an optimized LSTM-based 

framework that balances forecasting accuracy, 

computational feasibility, and practical 

deployment ability. 

Owing to the stochastic nature of solar 

irradiance, PV forecasting continues to be an 

active area of research. Deep learning 

approaches—particularly LSTM-based 

architectures—have been widely employed to 

capture temporal dependencies and improve 
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prediction performance (Jailani et al., 2023). 

Recent efforts have explored hybrid models, such 

as LSTM-transformer or CNN-LSTM networks, 

which combined different learning paradigms to 

increase accuracy. However, these models often 

involved high computational costs, making them 

unsuitable for real-time or resource-constrained 

settings (Salman et al., 2024). 

The choice between forecasting methods is 

often depended on the specific application. 

Deterministic forecasts are typically suitable for 

short-term operational decisions, whereas 

probabilistic forecasts are increasingly critical for 

grid stability and long-term risk management. 

Studies have shown that probabilistic models 

outperform deterministic models in representing 

uncertainty, particularly during nonstationary 

periods (An et al., 2021; Bracale et al., 2016). 

This growing distinction is emphasized the 

relevance of probabilistic approaches in the 

evolution of modern, flexible energy systems. 

To address the limitations of traditional 

models, research workers have integrated 

metaheuristic optimization techniques—such as 

Aquila optimization and the crested porcupine 

optimizer—to fine-tune LSTM hyperparameters, 

resulting in improved performance (Fan et al., 

2024; Liu et al., 2022). Nonetheless, these 

enhancements are typically required large, high-

resolution datasets and introduce additional 

model complexity. These constraints highlighted 

the pressing need for more efficient, scalable, and 

context-adaptive forecasting solutions. 

Despite considerable progress, several key 

research gaps are remained. First, the most state-

of-the-art forecasting models relied on high-

resolution, location-specific meteorological data, 

which may not be available in all regions (Sabri 

& El Hassouni, 2023). Second, while hybrid deep 

learning models such as CNN-LSTM-Attention 

offered high accuracy, their computational 

overhead are often limited their applicability in 

real-time forecasting environments (Ahmed et 

al., 2025). Finally, there is a growing need for 

forecasting frameworks that are not only accurate 

but also lightweight and adaptable to diverse 

deployment contexts. In response, this study 

would propose a computationally efficient, 

locally adaptable LSTM-based architecture 

tailored for short-term solar energy forecasting. 

MATERIALS AND METHODS 

Data 

The dataset used in this study was compiled 

from multiple reliable sources to ensure both 

accuracy and comprehensiveness. The primary 

data regarding PV production, electricity 

consumption, and other building-related features 

were obtained from the IPart platform, which 

provided high-resolution energy data from real 

residential and industrial buildings. 

In order to enhance the performance of the 

forecasting model, this dataset was enriched by 

merging it with weather data retrieved from the 

Ninja platform, which included historical 

meteorological variables such as temperature, 

wind speed, and cloud cover. 

In addition, several important solar radiation 

features—such as global horizontal irradiance 

(GHI), direct normal irradiance (DNI), and 

diffuse horizontal irradiance (DHI) were 

computed via the PVLib library, which is a well-

established tool for solar energy modeling and 

simulation. 

As a result, the energy performance data and 

meteorological parameters were combined into a 

unified and time-aligned format, provided a solid 

foundation for training and evaluating the LSTM-

based forecasting model. 

Feature Selection 

In order to identify the most relevant input 

features for the PV production forecasting model, 

the Pearson’s correlation coefficient was 

employed as a statistical method to evaluate the 

linear relationships between variables. The 

strength and direction of the linear association 

between two continuous variables, X and Y is 

quantified by the Pearson’s correlation 

coefficient, Equation (1) (Hapsari et al., 2025). 
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𝑟 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛
𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1 ⋅ √∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖=1

 
(1) 

 

where, Xi and Yi represent the individual 

sample values of variables X and Y, respectively; 

X̄ and Ȳ denote their mean values; and n is the 

total number of samples. The coefficient r ranges 

from −1 to +1, where values close to +1 indicate 

a strong positive linear correlation, values near −1 

indicate a strong negative linear correlation, and 

values around zero suggest little to no linear 

relationship. 

Features demonstrating a strong or moderate 

correlation with the target variable, PV output, 

were selected as inputs to the LSTM model. This 

feature selection process was critical to reduce 

dataset dimensionality, eliminate irrelevant or 

redundant inputs, and enhance the training 

efficiency and generalizability of the forecasting 

model. 

Data Preparation: 

The initial dataset, composed of weather and 

PV-related features, was first augmented by 

incorporating lagged variables (shifted by one 

time step) to provide the model with a temporal 

context and recent trends. All the features were 

normalized via Min-Max scaler to ensure that the 

input values fell within the [0, 1] range, which 

could facilitate stable training. 

The following variables were selected as the 

model inputs on the basis of their correlation with 

PV output: generation, Day_cos, zenith, 

elevation, irradiance surface, GHI, DNI, DHI, 

and AOI. Shifted versions of these features were 

also included to improve temporal representation. 

In order to convert the input data into a suitable 

format for LSTM training, it was structured to 

overlap sequences of 24-time steps 

(corresponding to hourly data over a day). Each 

sequence was associated with the PV generation 

value at the next time step, forming the basis for 

supervised learning. 

Model architecture 

The meticulously designed LSTM model was 

crafted with two stacked LSTM layers, each 

housing 64 units. To ensure robustness, drop-out 

regularization (with a rate of 0.3) was 

meticulously applied after each LSTM layer to 

prevent overfitting. A dense layer with one output 

neuron was meticulously used at the final layer to 

produce the forecast value, further enhancing the 

model's robustness. 

The model was compiled with the Adam 

optimizer and trained with the mean squared error 

(MSE) as the loss function. Early stopping and 

learning rate reduction strategies were employed 

to enhance training stability and convergence. 

Table 1 shows the details of the network. Also, 

Figure 1 shows the overall process of the model 

and its schematic. 

Table 1. The developed LSTM Model Architecture 

Layer (Type) Output Shape Parameters Description 

Input Layer (24, 18) 0 24-time steps, 18 features (9 original + 9 shifted) 

LSTM (1st layer) (24, 64) 21,248 return_sequences=True 

Drop-out (24, 64) 0 Dropout rate: 0.3 

LSTM (2nd layer) (64) 33,024 return_sequences=False 

Dropout (64) 0 Drop-out rate: 0.3 

Dense (Output) (1) 65 Linear activation 

Total Parameters — 54,337 Summed from all layers 
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Figure1. LSTM model schematic 

Model Evaluation 

The performance of the LSTM model in 

forecasting photovoltaic energy production was 

assessed by four widely used error metrics, 

calculated on the both training and test datasets: 

Mean Absolute Error (MAE) 

 This metric measures the average magnitude 

of the absolute differences between the predicted 

and actual values. It is straightforward to interpret 

and less sensitive to outliers. 

𝑀𝐴𝐸 = (1/𝑛) ∗ 𝛴|𝑦𝑖 − ŷ𝑖| (2) 

Equation 2 describes how to obtain the MAE, 

where yi is the actual value of sample i, ŷi is the 

predicted value of sample i, and n is the total 

number of samples. The symbol Σ represents the 

sum of all samples from i=1 to n, and the absolute 

value |yi - ŷi| represents the absolute difference 

between the actual and predicted values. MAE, a 

simple and interpretable measure, is the average 

of the model error and is less sensitive to outliers, 

making it easy to understand and use (Robeson & 

Willmott, 2023; Willmott & Matsuura, 2005). 

Mean squared error (MSE) 

The MSE calculates the average of the squared 

differences between the predicted and actual 

values. It penalizes larger errors more heavily, 

making it useful for identifying large deviations 

in predictions. 

In Equation 3, the formula for calculating MSE 

is stated as the square of the difference (yi-ŷi)^2, 

which makes larger errors have a greater impact. 

As with MAE, yi is the actual value, ŷi is the 

predicted value, and n is the number of samples. 

MSE is not just a theoretical concept but a 

practical tool that is useful in identifying large 

deviations in predictions, making it highly 

relevant and useful in real-world scenarios (Zhao 

et al., 2023). 

𝑀𝑆𝐸 = (1/𝑛) ∗ 𝛴(𝑦𝑖 − ŷ𝑖)
2 

 
(3) 

Root mean square error (RMSE) 

As the square root of the MSE, the RMSE 

retains the same unit as the original data and 

provides a more intuitive understanding of the 

magnitude of the prediction error Equation 4 

shows the formula for obtaining RMSE (Chicco 

et al., 2021). 

𝑅𝑀𝑆𝐸 = √(1/𝑛) ∗ 𝛴(𝑦𝑖 − ŷ𝑖)
2 = √𝑀𝑆𝐸 (4) 

Coefficient of determination (R² score) 

 This statistical metric indicates how well the 

model explains the variance in the target variable. 

An R² value closer to 1 suggests that the model 

has strong predictive ability. In equation 5, ȳ is 

the mean of the actual values and the denominator 

is the sum of the squares of the deviations of the 

actual values from the mean. An R² close to 1 

indicates a high accuracy of the model in 

predictions(Yadav et al., 2025). 
𝑅2 = 1 − [𝛴(𝑦𝑖 − ŷ𝑖)

2/𝛴(𝑦𝑖 − ȳ)2], ȳ
= (1/𝑛) ∗ 𝛴𝑦𝑖 

(5) 

Implementation of different models for 

comparison 

Two other models, CatBoost and gradient 

boosting regression (GBR), were also 

implemented on the data. The both models were 

optimized through trial and error. The results 

were compared and analyzed with those of the 

LSTM model via validation criteria. 

RESULTS AND DISCUSSION 

Correlation Analysis of Selected Features 
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Triangular Pearson’s correlation heatmap that 

was illustrated the linear relationships between 

PV power generation and selected input features 

is shown in Figure 2. The Figure reveals that the 

PV output had strong positive correlations with 

irradiance-related variables, particularly global 

horizontal irradiance (GHI) and direct normal 

irradiance (DNI), indicating their direct influence 

on energy production. Additionally, solar 

geometric features such as the cosine of the day, 

elevation angle, and azimuth angle also showed 

moderate to high positive correlations with PV 

generation, suggesting their relevance in 

capturing seasonal and diurnal patterns of solar 

exposure. Conversely, features such as the angle 

of incidence (AOI) and zenith angle have 

negatively correlated with the PV output, 

reflecting the physical inverse relationship 

between these angles and effective solar 

irradiance on the panels. These correlations 

guided the feature selection process by 

identifying the most impactful predictors for 

model training. 

 

Figure 2. Pearson’s correlation heatmap between PV power generation and selected input features 

Performance Evaluation of Models for PV 

Production Prediction 

In this study, the performance of three machine 

learning models i.e. CatBoost, LSTM and GBR 

were evaluated to forecast PV production. The 

results of modelling are summarized in Table 3. 
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Table 2. Evaluation of the Modelling Performance for PV Production Prediction 

Model Dataset R² Score MAE MSE RMSE 

CatBoost Training 0.9367 0.1097 0.0488 0.2208 

CatBoost Test 0.9179 0.1094 0.0535 0.2313 

LSTM Training 0.9270 0.0327 0.0044 0.0661 

LSTM Test 0.9212 0.0324 0.0042 0.0650 

GBR Training 0.7562 0.2287 0.1834 - 

GBR Test 0.7364 0.2325 0.1911 - 

As given in Table 2, the CatBoost model 

demonstrated robust performance, achieving an 

R² score of 0.9367 on the training dataset and 

0.9179 on the test dataset. Its error metrics, 

including the MAE (0.1094) and RMSE (0.2313) 

on the test set, indicate great predictive accuracy 

and reasonable generalizability, with only a slight 

performance drop on the test data. This suggested 

minimal overfitting and strong applicability for 

PV forecasting. 

The LSTM model exhibited superior 

performance, with an R² score of 0.9270 on the 

training dataset and 0.9212 on the test dataset. 

Notably, its error metrics were exceptionally low, 

with an MAE of 0.0324, an MSE of 0.0042, and 

an RMSE of 0.0650 on the test set. These results 

highlighted the remarkable precision and 

excellent generalizability of LSTM, positioning it 

as the most effective model in this study. 

In contrast, the GBR model yielded suboptimal 

results, with an R² score of 0.7562 on the training 

dataset and 0.7364 on the test dataset. Its greater 

error metrics (MAE of 0.2325 and MSE of 0.1911 

on the test set) indicated less prediction accuracy 

compared with CatBoost and LSTM. The 

absence of RMSE values for GBR limited a 

complete comparison, but its overall performance 

suggested that it is less suitable for this 

application. 

 In conclusion, the LSTM model outperformed 

both CatBoost and GBR in terms of accuracy and 

generalizability, making it the preferred choice 

for PV production forecasting. CatBoost remains 

a viable alternative with strong performance, 

whereas GBR’s greater errors and smaller R² 

scores render it less effective. Future work could 

focus on optimizing the LSTM model or 

incorporating additional features to further 

increase the prediction accuracy.  

Model validation 

The performance evaluation of the developed 

LSTM model was conducted on the both training 

and test datasets. As given in Table 3, the results 

indicated that the model achieved great predictive 

accuracy with minimal error across all the 

evaluation metrics. 

Specifically, the model obtained an R² score of 

0.9270 on the training data and 0.9212 on the test 

data, demonstrating a strong ability to capture the 

underlying patterns in PV energy production. 

Furthermore, the values of the MAE, MSE, and 

RMSE were consistently small and closely 

matched between the training and testing phases. 

The close alignment of performance metrics 

across the both datasets could be confirmed that 

the model is not overfitting and generalizes well 

to unseen data. This would validate the 

robustness and reliability of the LSTM-based 

forecasting framework. 

 

 

 

Table 3. The Developed Model Evaluation Metrics 

Metric Train Test 

R² Score 0.9270 0.9212 

MAE 0.0327 0.0324 

MSE 0.0044 0.0042 

RMSE 0.0661 0.0650 
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Figure 3. Comparison Between Predicted and actual PV output for 300 test samples 

Analysis of LSTM Model Performance 

through Loss Curves 

The performance of the LSTM model in 

predicting PV production would be further 

evaluated through the analysis of training and 

validation loss curves (Figure 4). The evolution 

of MSE loss over 30 epochs for the both training 

and validation datasets are depicted on the Figure 

4. Initially, both training and validation losses 

sharply declined, which indicated suitable model 

convergence during the early stages of training. 

The training loss decreased from approximately 

0.016 to a stable value of approximately 0.005, 

reflecting effective learning from the training 

data. Similarly, the validation loss decreased 

from an initial high value to stabilize at 

approximately 0.004–0.005 after approximately 

10 epochs, which was revealed robust 

generalizability to unseen data. 

The close alignment between the training and 

validation loss curves after the initial 

convergence phase indicated minimal overfitting, 

a critical factor for the reliability of the model in 

real-world applications. The slight fluctuations in 

the validation loss toward the later epochs 

(beyond 20 epochs) were minor and did not 

suggest divergence, further supporting the 

model’s stability. These results are also 

corroborated the quantitative metrics previously 

reported, including a R² score of 0.9212 and a 

RMSE of 0.0650 on the test dataset, which could 

underscore LSTM’s superior predictive accuracy 

and its suitability for PV production forecasting.  
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Figure 4. Training and validation loss curves for the LSTM model 

Comparative Analysis with Recent Studies 

The performance of the developed LSTM 

model for hourly PV power forecasting in Sydney 

was compared with that of recent models in the 

literature to assess the effectiveness of the model 

(Table 4). The developed model achieved a R² 

score of 0.9212 and a RMSE of 0.0650 on the test 

dataset, reflecting strong predictive accuracy and 

generalizability. 

Compared with basic LSTM approaches such 

as that of Suyambu et al., which reported a R² of 

0.866 and a RMSE of 0.0544 for energy load 

forecasting, the current model showed a greater 

correlation and comparable error metrics 

(Suyambu et al., 2024). While hybrid and 

attention-based models such as those by Abdullah 

et al. and Wu et al. achieve greater R² scores 

(above 0.99), they relied on more complex 

architectures (for example attention layers and 

dual decomposition) that significantly increased 

computational cost and implementation 

complexity (Abdullah et al., 2024; Wu et al., 

2024). 

The simplicity of the proposed LSTM model 

could be a key advantage, offering robust and 

consistent performance across the training and 

test phases without reliance on hybrid 

mechanisms. This balance between accuracy and 

efficiency made it well suited for real-time solar 

forecasting applications, especially in resource-

constrained environments. These findings 

confirmed that while hybrid models might 

achieve marginally greater accuracy, a well-tuned 

standalone LSTM could provide a strong trade-

off between performance and simplicity. 
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Assessment of LSTM Model Predictive 

Accuracy via Regression Analysis 

The predictive capability of the LSTM model 

for PV production forecasting was rigorously 

assessed through a regression analysis of the test 

dataset, as illustrated in Figure 5. This scatter plot 

compared the actual PV generation values against 

the predicted values, with a regression line 

superimposed to indicate the degree of fit. The R² 

of 0.9212 reflected a strong linear relationship 

between the predicted and actual generation 

values, underscoring the model’s great accuracy. 

The tight clustering of data points around the 

regression line further validated the model’s 

consistency and reliability across the test set. This 

visual evidence is aligned with the quantitative 

metrics previously reported, including a MAE of 

0.0324 and a RMSE of 0.0650, confirming the 

robust performance of the LSTM. The slight 

deviations from the regression line are minimal, 

suggesting effective generalization and minimal 

bias in the predictions.  

 

Table 4. Comparative Performance of Hourly PV Forecasting Models 
 

Study Model R² MAE RMSE Notes 

This Study LSTM 0.9212 0.0324 0.0650 
Accurate, generalizable, and 

computationally efficient 

  (Sharma 

et al., 2022) 
LSTM 0.931 – – 

Focused on HVAC energy use 

prediction 

(Abdullah 

et al., 2024)  
Hybrid LSTM + Attention 0.992 0.007 0.012 

High accuracy due to attention 

mechanisms 

(Suyambu 

et al., 2024)  
LSTM 0.866 0.0431 0.0544 Basic LSTM for load forecasting 

 (Wu et al., 

2024) 
BiGRU-BiLSTM (Hybrid) 0.9922 – – 

Uses dual time-domain 

decomposition 

 (Mazen et 

al., 2023) 
GRU–TFT – 1.19 1.44 

Advanced loss functions applied to 

solar power forecasting 
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Figure 5. Comparison between the actual and predicted data through regression line  (R² = 0.9212) 

CONCLUSIONS 

This study advanced short-term PV power 

forecasting by developing and validating a 

computationally efficient LSTM-based model 

tailored to meet the operational demands of 

renewable energy integration. Through 

meticulous data curation and rigorous feature 

selection, the model attained outstanding 

performance metrics a R² score of 0.9212 and a 

RMSE of 0.0650 on unseen data surpassing 

benchmark models such as CatBoost and GBR.  

These results affirmed the model’s ability to 

capture temporal dependencies in PV generation 

data while maintaining computational efficiency, 

which could render it ideal for real-time energy 

management applications. Nonetheless, 

limitations including reliance on high-quality 

input data and untested robustness under extreme 

weather conditions, warrant further investigation. 

Future research could enhance the model by 

incorporating probabilistic forecasting, 

lightweight attention mechanisms, or transfer 

learning to improve adaptability across diverse 

geographic and climatic contexts. Ultimately, this 

research work contributed a robust, practical tool 

to the domain of smart grid technologies, 

supporting the global transition to sustainable 

energy systems with enhanced forecasting 

precision and scalability. 

Data and Code Availability 

The dataset utilized in this study, along with a 

summarized version of the implementation code, 

is publicly available in the author's GitHub 

repository at: 

https://github.com/SohaSamiii 

The repository, entitled "Simple LSTM-based 

Hourly Photovoltaic Power Forecasting", 

contains the preprocessed data files, model 

architecture, training pipeline, and evaluation 

scripts. This open-source release aims to promote 

transparency, reproducibility, and future research 

in the domain of solar energy forecasting using 

deep learning models. 
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