Adeoba, M., Pandelani, T., Ngwangwa, H., & Masebe, T. (2025). The Role of Artificial Intelligence Technology in the Fulfilment of Sustainable Development Goals in Biogas Production. CONECT. International Scientific Conference of Environmental and Climate Technologies.
https://doi.org/10.7250/CONECT.2025.040
Aguida, M. A., Ouchani, S., & Benmalek, M. (2021). An IoT-based framework for an optimal monitoring and control of cyber-physical systems: application on biogas production system. Proceedings of the 11th International Conference on the Internet of Things (pp. 143-149).
https://doi.org/10.1145/3494322.3494341
Angelidaki, I., & Ellegaard, L. (2003). Codigestion of manure and organic wastes in centralized biogas plants: status and future trends.
Applied biochemistry and biotechnology, 109(1), 95-105.
https://doi.org/10.1385/ABAB:109:1-3:95
Arumugham, V., Ghanimi, H. M., Pustokhin, D. A., Pustokhina, I. V., Ponnam, V. S., Alharbi, M., Krishnamoorthy, P., & Sengan, S. (2023). An artificial-intelligence-based renewable energy prediction program for demand-side management in smart grids.
Sustainability, 15(6), 5453.
https://doi.org/10.3390/su15065453
Chen, L., He, P., Zou, J., Zhang, H., Peng, W., & Lü, F. (2025). Scalable and interpretable automated machine learning framework for biogas prediction, optimization, and stability monitoring in industrial-scale dry anaerobic digestion.
Chemical Engineering Journal, 519, 165482.
https://doi.org/10.1016/j.cej.2025.165482
Clifford, J. L., Chan, Y. J., Yusof, M. A. B. M., Tiong, T. J., Lim, S. S., Lee, C. S., & Tong, W.-Y. (2025). Predictive Modelling of H2S Removal from Biogas Generated from Palm Oil Mill Effluent (POME) Using a Biological Scrubber in an Industrial Biogas Plant: Integration of Artificial Neural Network (ANN) and Process Simulation §.
Food Technology and Biotechnology, 63(2), 124-133.
https://doi.org/10.17113/ftb.63.02.25.8792
Colak, M. B., & Özhan, E. (2025). Renewable Energy Forecasting in Turkey: Analytical Approaches.
Journal of Intelligent Systems: Theory and Applications, 8(1), 25-34.
https://doi.org/10.38016/jista.1447980
De Clercq, D., Jalota, D., Shang, R., Ni, K., Zhang, Z., Khan, A., Wen, Z., Caicedo, L., & Yuan, K. (2019). Machine learning powered software for accurate prediction of biogas production: A case study on industrial-scale Chinese production data.
Journal of cleaner production, 218, 390-399.
https://doi.org/10.1016/j.jclepro.2019.01.031
De Clercq, D., Wen, Z., Fei, F., Caicedo, L., Yuan, K., & Shang, R. (2020). Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion.
Science of the Total Environment, 712, 134574.
https://doi.org/10.1016/j.scitotenv.2019.134574
de Lima Pacheco, M., Ramos, R. C., & Fernando, J. S. (2025). Artificial Intelligence in Developing Countries: Challenges and Opportunities_An African view and its Application in Angola.
Revista Gênero e Interdisciplinaridade, 6(2), 60-82.
https://doi.org/10.51249/gei.v6i02.2455
Dewi, E. P., Sumarsono, J., Amuddin, A., & Kompyang, I. G. M. (2024). Development of data acquisition biogas monitoring system based on IoT.
Jurnal Agrotek Ummat, 11(1), 1-15.
https://doi.org/10.31764/jau.v11i1.20574
Drudi, R., Drudi, K. C. R., dos Anjos Silva, Í., Antonio, G. C., & de Campos Leite, J. T. (2024). Mathematical Modeling of Biogas Production in Sanitary Landfills.
Revista de Gestão Social e Ambiental, 18(11), 1-17.
https://doi.org/10.24857/rgsa.v18n11-010
Ellacuriaga, M., García-Cascallana, J., & Gómez, X. (2021). Biogas production from organic wastes: Integrating concepts of circular economy.
Fuels, 2(2), 144-167.
https://doi.org/10.3390/fuels2020009
Gaikwad, P., Chavan, A., Ghodekar, S., Marale, D., & Karne, H. (2025). Predictive Modeling of Biogas Production Using Machine Learning.
International Journal of Latest Technology in Engineering, Management & Applied Science, 14(5), 54-61.
https://doi.org/10.51583/IJLTEMAS.2025.140500009
Gouiza, N., Jebari, H., & Reklaoui, K. (2024). Integration of iot-enabled technologies and artificial intelligence in diverse domains: Recent advancements and future trends. Journal of Theoretical and Applied Information Technology, 102(5), 1975-2029.
Isenkul, M. E., Güneş-Durak, S., Kocak, Y. P., Pir, İ., Tüfekci, M., Demirkol, G. T., Sevgen, S., Çığgın, A. S., & Tüfekci, N. (2025). Predicting biogas production in real scale anaerobic digester under dynamic conditions with machine learning approach.
Environmental Research Communications, 7(6), 065016.
https://doi.org/10.1088/2515-7620/ade03b
Janke, L., Leite, A., Nikolausz, M., Schmidt, T., Liebetrau, J., Nelles, M., & Stinner, W. (2015). Biogas production from sugarcane waste: assessment on kinetic challenges for process designing.
International journal of molecular sciences, 16(9), 20685-20703.
https://doi.org/10.3390/ijms160920685
Kasulla, S., Malik, S., Yadav, A., Kathpal, G., & Zafar, S. (2025). Harnessing Convolutional Neural Networks for The Optimization of Anaerobic Digestion of Sugarcane Bagasse: A Novel Approach to Pretreatment Strategies and Microbial Activity Prediction.
African Journal of Biomedical Research, 28, 601-618.
https://doi.org/10.53555/8fp4dq69
Mathur, R., Sharma, M. K., Loganathan, K., Abbas, M., Hussain, S., Kataria, G., Alqahtani, M. S., & Srinivas Rao, K. (2024). Modeling of two-stage anaerobic onsite wastewater sanitation system to predict effluent soluble chemical oxygen demand through machine learning.
Scientific Reports, 14(1), 1835.
https://doi.org/10.1038/s41598-023-50805-x
Mittal, S., Ahlgren, E. O., & Shukla, P. (2018). Barriers to biogas dissemination in India: A review. Energy Policy, 112, 361-370.
Mukasine, A., Sibomana, L., Jayavel, K., Nkurikiyeyezu, K., & Hitimana, E. (2023). Correlation Analysis Model of Environment Parameters Using IoT Framework in a Biogas Energy Generation Context.
Future Internet, 15(8), 265.
https://doi.org/10.3390/fi15080265
Mukasine, A., Sibomana, L., Jayavel, K., Nkurikiyeyezu, K., & Hitimana, E. (2024). Maximizing biogas yield using an optimized stacking ensemble machine learning approach.
Energies, 17(2), 364.
https://doi.org/10.3390/en17020364
Nazmi, H., Siau, N. Z., Bramantoro, A., & Suhaili, W. S. (2023). Predictive modeling of marine fish production in brunei darussalam’s aquaculture sector: A comparative analysis of machine learning and statistical techniques.
International Journal of Advanced and Applied Sciences, 10(7), 109-126.
https://doi.org/10.21833/ijaas.2023.07.013
Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., Lopez Garcia, A., Heredia, I., Malík, P., & Hluchý, L. (2019). Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey.
Artificial Intelligence Review, 52(1), 77-124.
https://doi.org/10.1007/s10462-018-09679-z
Olatunji, O. O., Adedeji, P. A., Madushele, N., Rasmeni, Z. Z., & van Rensburg, N. J. (2024). Evolutionary optimization of biogas production from food, fruit, and vegetable (FFV) waste.
Biomass Conversion and Biorefinery, 14(11), 12113-12125.
https://doi.org/10.1007/s13399-023-04506-0
Paleyes, A., Urma, R.-G., & Lawrence, N. D. (2022). Challenges in deploying machine learning: a survey of case studies.
ACM computing surveys, 55(6), 1-29.
https://doi.org/10.1145/3533378
Rezaeifar, J., Rohani, A., & Ebrahimi-Nik, M. (2024). Unleashing Dairy Manure's Biogas Potential: A Michaelis-Menten Modeling Approach.
Biomechanism and Bioenergy Research, 3(1), 46-55.
https://doi.org/10.22103/bbr.2024.22854.1076
Rutland, H., You, J., Liu, H., Bull, L., & Reynolds, D. (2023). A systematic review of machine-learning solutions in anaerobic digestion.
Bioengineering, 10(12), 1410.
https://doi.org/10.3390/bioengineering10121410
Sun, J., Xu, Y., Nairat, S., Zhou, J., & He, Z. (2023). Prediction of biogas production in anaerobic digestion of a full‐scale wastewater treatment plant using ensembled machine learning models.
Water Environment Research, 95(6), e10893.
https://doi.org/10.1002/wer.10893
Theuerl, S., Klang, J., & Prochnow, A. (2019). Process disturbances in agricultural biogas production—Causes, mechanisms and effects on the biogas microbiome: A review.
Energies, 12(3), 365.
https://doi.org/10.3390/en12030365
Tisocco, S., Weinrich, S., Lyons, G., Wills, M., Zhan, X., & Crosson, P. (2024). Application of a simplified ADM1 for full-scale anaerobic co-digestion of cattle slurry and grass silage: assessment of input variability.
Frontiers of Environmental Science & Engineering, 18(4), 50.
https://doi.org/10.1007/s11783-024-1810-9
Tryhuba, I., Tryhuba, A., Hutsol, T., Cieszewska, A., Andrushkiv, O., Glowacki, S., Bryś, A., Slobodian, S., Tulej, W., & Sojak, M. (2024). Prediction of Biogas Production Volumes from Household Organic Waste Based on Machine Learning.
Energies, 17(7), 1786.
https://doi.org/10.3390/en17071786
Wang, T., Wang, X., Ma, R., Li, X., Hu, X., Chan, F. T., & Ruan, J. (2020). Random forest-bayesian optimization for product quality prediction with large-scale dimensions in process industrial cyber–physical systems. IEEE Internet of Things Journal, 7(9), 8641-8653.
Wang, Y., Huntington, T., & Scown, C. D. (2021). Tree-based automated machine learning to predict biogas production for anaerobic co-digestion of organic waste.
ACS Sustainable Chemistry & Engineering, 9(38), 12990-13000.
https://doi.org/10.1101/2021.07.12.452124
Zhu, J.-J., Yang, M., & Ren, Z. J. (2023). Machine learning in environmental research: common pitfalls and best practices.
Environmental Science & Technology, 57(46), 17671-17689.
https://doi.org/10.1021/acs.est.3c00026