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ABSTRACT 

Artificial intelligence (AI) plays a transformative role in improving the 

efficiency of biogas production by providing advanced tools for 

predicting and optimizing anaerobic digestion processes as a sustainable 

source of organic waste management and renewable energy supply. This 

study provides a systematic review of the applications of AI in biogas 

production prediction and, by reviewing recent studies, evaluates 

statistical, machine learning, and hybrid models and compares the 

performance of algorithms such as Random Forest and Artificial Neural 

Networks (ANN). These algorithms have shown outstanding 

performance in recent studies due to their ability to model nonlinear and 

dynamic behaviors. However, challenges such as inconsistent data 

quality, biochemical complexities, and generalizability limitations have 

limited the full exploitation of these technologies. Through a 

comprehensive literature review, this study identifies the strengths and 

weaknesses of existing models and proposes innovative solutions, 

including the integration of real-time data based on the Internet of Things 

(IoT), the development of hybrid models, and the utilization of transfer 

learning. The findings highlight the potential of artificial intelligence in 

improving the efficiency of biogas systems, reducing operating costs, 

and supporting sustainable energy planning, and provide directions for 

the development of intelligent and scalable forecasting tools. 
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INTRODUCTION 

Renewable energy sources have emerged as 

crucial solutions to address environmental crises 

and reduce global reliance on fossil fuels. Among 

these sources, biogas has gained considerable 

attention for its dual role in energy generation and 

organic waste management. Produced through 

the anaerobic digestion (AD) of organic matter, 

biogas stands out due to its ability to convert 

waste into a clean energy source, while 

simultaneously reducing greenhouse gas 

emissions (Angelidaki & Ellegaard, 2003; Raven 

& Gregersen, 2007; Rezaeifar et al., 2024). 

Despite its significant advantages, the biogas 

production process is complex and inherently 

prone to significant fluctuations. These 

instabilities are mainly due to changes in 

feedstock composition, environmental conditions 

such as temperature and pH, and technical 

limitations or inefficiencies in reactor operation 

(Labatut et al., 2011). Such uncertainties can 

reduce production efficiency, increase operating 

costs, and thus pose significant obstacles to the 

development and widespread use of biogas 

technologies (Pilarski et al., 2025).  

Predictive models powered by artificial 

intelligence (AI) play a vital role in optimizing 

biogas production and its integration into broader 

climate strategies. By accurately forecasting 

feedstock behavior, system efficiency, and 

emission outputs, AI supports smarter decision-

making across biogas value chains. As shown in 

Figure 1, achieving significant CO₂ reductions by 

2050 requires coordinated efforts across multiple 

sectors including renewable fuels like biogas 

(IEA)1. AI-driven forecasting ensures that biogas 

contributes efficiently and reliably to such long-

term sustainable development scenarios 

(Tryhuba et al., 2024). 

Figure1. Global CO₂ Emissions Trajectories under Different Policy Scenarios (2010–2050). 

Accurate forecasting of these fluctuations is 

essential for enhancing system stability, 

                                                       
1 https://www.iea.org/ 

 

minimizing disruptions, and optimizing overall 

performance. Predictive models enable early 

https://www.iea.org/
https://www.iea.org/
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identification of potential issues, allowing timely 

intervention and prevention of production losses 

(Theuerl et al., 2019; Tisocco et al., 2024). As 

shown in Figure 2, the projected global use of 

biogas—particularly in the industrial sector and 

for biomethane upgrading—is expected to grow 

significantly by 2040, highlighting the urgent 

need for robust and scalable predictive tools 

(IRENA)2. 

Beyond improving stability, predictive 

modeling plays a crucial role in operational cost 

reduction. By analyzing historical data and 

detecting complex patterns, machine learning 

(ML) techniques facilitate process optimization 

and more efficient use of resources. For instance, 

models such as Random Forest (RF) and 

Artificial Neural Networks (ANNs) have 

demonstrated high accuracy in forecasting biogas 

output, thereby reducing the risks and expenses 

associated with operational errors (Mukasine et 

al., 2024). 

Figure 2. Forecast of global biogas consumption. 

Impact on long-term biogas planning and 

energy forecasting: Accurate forecasting greatly 

assists strategic engineering decisions in long-

term biogas planning, especially in managing 

input variability and process disturbances 

(Tisocco et al., 2024). Full-scale applications 

have benefited from hybrid computational 

models to improve energy efficiency and 

resource allocation in both bioreactor and biogas 

upgrading environments (Isenkul et al., 2025). 

The systematic use of computational and machine 

learning-based models in resource recovery and 

                                                       
2 https://www.irena.org/publications 

waste-to-energy pathways has been valuable in 

maximizing efficiency, reducing inefficiencies, 

and informing sustainable engineering design 

(Drudi et al., 2024). 

As illustrated in Figure 2, fluctuations in biogas 

production are influenced by multiple 

interconnected factors including feedstock 

variability, environmental and operational 

challenges, and technical limitations. Predictive 

modeling addresses these factors by enabling 

early issue detection, improving efficiency, 

lowering operational risks, and guiding informed 
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decision-making. Advanced techniques such as 

deep learning (DL) and big data analytics further 

enhance the predictive capabilities of these 

models, supporting both technical optimization 

and high-level energy policy development 

(Dittmer et al., 2021). 

This growing intersection between AI and 

biogas production creates a transformative 

potential for renewable energy systems, where 

intelligent forecasting can lead to cleaner, more 

efficient, and economically viable energy 

solutions. 

Despite significant advancements in predictive 

modeling for biogas systems, notable gaps 

remain in the comprehensive evaluation of model 

accuracy, generalizability across diverse 

operating conditions, and the systematic analysis 

of their practical strengths and limitations. Much 

of the existing literature tends to focus on isolated 

models or limited datasets, with insufficient 

comparative studies that assess multiple 

predictive approaches within a unified analytical 

framework. Moreover, the practical applicability 

of these models in real-world, large-scale biogas 

operations remains underexplored, particularly 

regarding their integration into industrial process 

control and strategic energy planning. 

The objective of this study is to assess the 

accuracy of implemented predictive models and 

to provide a critical, analytical perspective on 

their advantages and limitations within the 

context of biogas production. By addressing these 

gaps, the study aims to support the development 

of more robust forecasting tools and inform 

smarter decision-making in the design, operation, 

and scaling of biogas technologies. 

Methods and Predictive Models in Biogas 

Production 

Accurate prediction of biogas production is a 

critical factor in optimizing AD processes and 

enhancing system efficiency. A variety of 

predictive models have been employed for this 

purpose, generally categorized into 

statistical/mathematical models, AI models, and 

hybrid approaches. 

Statistical and Mathematical Models 

Statistical and mathematical modeling 

techniques, such as linear regression, 

Autoregressive Integrated Moving Average 

(ARIMA), and time series analysis, have been 

widely used due to their capacity to analyze 

historical data and identify underlying patterns. 

ARIMA models, in particular, have shown 

effective performance in handling non-stationary 

data for biogas yield forecasting (Colak & Özhan, 

2025; Nazmi et al., 2023). Similarly, extended 

variants like Seasonal ARIMA (SARIMA) have 

demonstrated success in capturing seasonal 

variations in biogas production, offering 

improved prediction reliability in long-term 

forecasting scenarios (Dittmer et al., 2021; Sakib 

et al., 2025) 

 Artificial Intelligence Models 

AI-based approaches, including ANNs and ML 

algorithms, have gained significant attention for 

their ability to process large volumes of complex 

and nonlinear data. These models utilize learning 

algorithms to identify intricate patterns in 

multidimensional datasets, thereby enhancing the 

accuracy of biogas production forecasting. 

Studies have shown that ANNs can effectively 

optimize biological processes by accurately 

modeling the relationships between operational 

parameters and gas yield (Mukasine et al., 2023). 

In addition to ANNs, other ML algorithms like 

RF and Support Vector Machines (SVM) have 

also been successfully applied. RF has been 

utilized to identify the most significant input 

variables, while SVM has proven capable of 

managing nonlinear fluctuations and delivering 

high accuracy in biogas forecasting (de Lima 

Pacheco et al., 2025). 

Hybrid Models 

Hybrid models, which integrate the strengths of 

both statistical and AI-based techniques, have 

emerged as robust tools for biogas prediction. 

These models aim to overcome the limitations of 

individual modeling approaches by combining 

their complementary advantages. For instance, 

the integration of the Gompertz growth model 
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with ML has resulted in a 53% reduction in 

forecasting error (Arumugham et al., 2023; 

Olatunji et al., 2024). Furthermore, hybrid 

frameworks incorporating ANN with time series 

models have achieved significant improvements 

in prediction accuracy (Chen et al., 2025; Wang 

et al., 2021). Such models are particularly 

effective when addressing nonlinear, dynamic, 

and multivariate characteristics of AD systems. 

Model Evaluation Criteria 

Evaluating the performance of predictive 

models is essential for selecting the most suitable 

approach for a given biogas system. Standard 

evaluation metrics include the Root Mean Square 

Error (RMSE), Mean Absolute Percentage Error 

(MAPE), and the Coefficient of Determination 

(R²). These metrics quantify the model’s ability 

to replicate observed data and reliably forecast 

future outputs accurately. For instance, in a 

comparative study, a hybrid model assessed using 

RMSE and MAPE outperformed other methods 

in terms of biogas prediction accuracy (Drudi et 

al., 2024). Similarly, RMSE and R² have been 

widely adopted to benchmark the predictive 

quality of AI and hybrid models, with several 

studies reporting superior performance using 

these indicators (Rutland et al., 2023). 

COMPARATIVE ASSESSMENT OF ML 

MODELS FOR BIOGAS PRODUCTION 

With the expansion of research in the field of 

biogas production prediction, the use of machine 

learning algorithms has become a primary focus 

of studies. In recent years, a variety of models 

have been employed, ranging from random 

forests and reinforcement learning algorithms to 

deep neural networks and hybrid models. This 

section reviews and compares the studies 

conducted to identify the strengths, limitations, 

and main trends of previous research while 

examining the performance of the models. 

Performance of Machine Learning 

Algorithms for Industrial-Scale Biogas 

Prediction 

Industrial-scale biogas production through 

anaerobic digestion (AD) is a key pillar of 

sustainable energy systems. Accurate prediction 

of biogas yield plays an important role in 

optimizing operational efficiency, reducing costs, 

and increasing energy recovery, but the nonlinear 

and dynamic nature of AD processes has posed 

serious challenges for traditional modeling 

(Ellacuriaga et al., 2021). In the meantime, ML 

using advanced algorithms has been able to 

identify complex relationships between 

operational parameters and has become a 

transformative tool for increasing prediction 

accuracy. The most widely used algorithms 

include regression models (such as linear 

regression and Ridge regression), clustering 

methods (such as Random Forest and Gradient 

Boosting), SVM, and ANN. Aggregate methods, 

especially RF, typically offer the best balance 

between accuracy, robustness, and computational 

efficiency, and have consistently outperformed 

other models in numerous studies (Isenkul et al., 

2025; Tryhuba et al., 2024; Yildirim & Ozkaya, 

2023). 

Industrial-scale case studies have also 

confirmed this; for example, RF has the highest 

accuracy in modeling nonlinear relationships 

between operating parameters and biogas 

production (Yildirim & Ozkaya, 2023), while 

XGBoost and SVR have also provided acceptable 

performance in some applications, such as 

wastewater treatment plants (De Clercq et al., 

2019; Isenkul et al., 2025). Although the k-NN 

algorithm is interpretable and straightforward, it 

has low accuracy in high-dimensional datasets 

(De Clercq et al., 2020). In contrast, ANN has a 

high ability to recognize complex patterns but 

requires substantial computational resources and 

a long training time. Combining multiple 

algorithms in Ensemble frameworks, such as 

Stacking, can increase the prediction accuracy 

more than single models (Mukasine et al., 2024; 

Sun et al., 2023). 

Also, emerging tools and methods such as 

automated machine learning (AutoML) 

frameworks including TPOT and AutoGluon 

have automated the process of model selection, 
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hyperparameter tuning, and feature engineering, 

and facilitated the development of accurate and 

scalable models (Nguyen et al., 2019; Wang et 

al., 2021). In addition, interpretability tools such 

as SHAP have identified the contribution of 

features to prediction and helped improve 

operational strategies and model reliability (Sun 

et al., 2023). Finally, new trends are moving 

towards integrating ML models with adaptive and 

real-time control systems that can make the 

anaerobic digestion process dynamic and 

optimized. Despite challenges such as poor data 

quality, limited model generalizability, high 

computational resource requirements in complex 

models, and difficulty in integrating with 

operational systems, the findings show that RF 

and ensemble methods combined with 

interpretability tools are the best options for 

biogas prediction on an industrial scale and can 

help improve the efficiency and sustainability of 

bioenergy systems (Chen et al., 2025; Paleyes et 

al., 2022; Rutland et al., 2023; Zhu et al., 2023). 

Comparative Analysis of Machine Learning 

Models for Biogas Production Prediction 

Recent advancements in ML have significantly 

improved predictive modeling for biogas 

production, enabling better optimization of AD 

processes. A critical analysis of commonly 

applied models reveals distinct advantages and 

limitations in terms of accuracy, computational 

efficiency, and adaptability to real-time 

environments. 

ANNs demonstrate strong capability in 

capturing nonlinear and complex patterns within 

large datasets, making them suitable for biogas 

prediction when extensive data are available. 

However, their reliance on high-quality data, 

sensitivity to noise, and long training times limit 

their practical deployment (Tryhuba et al., 2024). 

Similarly, CNN models have been successfully 

applied for predicting microbial activity and 

optimizing pretreatment strategies in AD 

(Kasulla et al., 2025). Despite their superior 

performance in handling complex data, CNN 

models are computationally expensive and less 

suited for real-time applications. 

Tree-based models, particularly RF, offer 

robustness to noisy and incomplete data while 

maintaining high predictive accuracy under 

practical conditions (Tryhuba et al., 2024). Their 

main drawback lies in increased computational 

demand with large ensembles. In contrast, SVM 

models excel in small datasets with high-

dimensional features, but their performance 

deteriorates with scale, and they require precise 

kernel tuning (Isenkul et al., 2025). 

Boosting algorithms, especially XGBoost, 

have gained prominence due to their fast training 

speed and excellent accuracy in multidimensional 

datasets (Gaikwad et al., 2025). Nevertheless, 

their sensitivity to noisy inputs and risk of 

overfitting when hyperparameters are not 

optimized remain notable concerns. Similarly, 

Gradient Boosting achieves high predictive 

accuracy but is computationally intensive and 

prone to overfitting without careful parameter 

adjustment (Tryhuba et al., 2024). The k-NN 

algorithm, although conceptually simple, is only 

suitable for small, uniformly distributed datasets 

and performs poorly on large or complex data 

(Mukasine et al., 2024). 

Table 1 provides a comparative overview of 

machine learning models for biogas production 

prediction, including their performance metrics, 

computational complexity, real-time suitability, 

and relevant studies. 

A visual comparison of these models in terms 

of predictive accuracy, computational 

complexity, and real-time suitability is presented 

in Figure 2, which illustrates their relative 

performance across key evaluation dimensions. 



35 

 

 
Figure3. Relative evaluation of algorithms in three key performance metrics. 

 

Table1. Comparison Table of Machine Learning Models for Biogas Production Prediction 

 

RESPONSE TO THE CHALLENGES IN 

BIOGAS PRODUCTION FORECASTING 

Improving Data Quality 

Improving data quality is essential for accurate 

predictions. Preprocessing methods such as 

outlier detection, data imputation, and sensor 

calibration can significantly improve model 

Model (R²) RMSE 
Suitable for 

Real-Time 
Strengths Weaknesses 

Studies 

Conducted 

ANN 0.92 0.15 No 

High capability in 

capturing complex 

patterns 

Requires high-quality 

data, long training time 

(Mukasine et al., 

2023; Nazmi et al., 

2023) 

Random Forest 0.94 0.12 Yes Robust to noisy data 

High computational 

demand with large 

ensembles 

(Tryhuba et al., 

2024; Yildirim & 

Ozkaya, 2023) 

SVM 0.89 0.18 No 

Suitable for small, 

high-dimensional 

datasets 

Requires precise kernel 

tuning, poor scalability 

(Isenkul et al., 

2025; Wang et al., 

2020) 

XGBoost 0.93 0.13 No 
Fast training, high 

accuracy 

Sensitive to noise, risk 

of overfitting 

(Gaikwad et al., 

2025; Tryhuba et 

al., 2024) 

k-NN 0.85 0.22 No 
Simple and 

interpretable 

Poor performance on 

large, complex datasets 

(De Clercq et al., 

2019; Mukasine et 

al., 2024) 
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inputs. Additionally, the use of IoT-based 

monitoring systems enables the collection of real-

time, high-resolution data on parameters like 

temperature and organic content, enhancing 

overall model reliability (Dewi et al., 2024; 

Gouiza et al., 2024). 

Managing Biochemical Complexity 

To address the nonlinear and dynamic nature of 

AD systems, AI-based methods—such as ANNs 

and genetic algorithms (GAs)—have shown 

strong capabilities in identifying hidden patterns 

in complex datasets and optimizing biogas output 

(Aguida et al., 2021). 

Enhancing Generalizability 

To improve model generalizability across 

different facilities, hybrid approaches that 

combine data-driven ML with process-based 

domain knowledge have been recommended 

(Pilarski et al., 2025). Establishing standardized 

data protocols can further enhance transferability 

and enable benchmarking. 

Enabling Real-Time Modeling 

Real-time forecasting can be realized by 

integrating deep learning algorithms such as 

LSTM into IoT-enabled infrastructures, allowing 

continuous data collection and adaptive 

prediction (Aguida et al., 2021; Dewi et al., 

2024). 

Infrastructure and Policy Support 

Policy interventions—such as forming biogas 

cooperatives and implementing supportive 

regulatory frameworks—can facilitate the 

widespread adoption of intelligent forecasting 

systems (Mittal et al., 2018). 

Technological Innovations 

Advanced pretreatment methods like ultrasonic 

and thermal processes have proven effective in 

increasing the digestibility of lignin-rich 

substrates and boosting methane yield in 

industrial-scale systems (Janke et al., 2015). 

Stakeholder Collaboration 

Collaborative frameworks that include 

researchers, plant operators, technology 

developers, and policymakers are essential for 

practical implementation. These partnerships 

support knowledge exchange and the co-

development of locally appropriate forecasting 

solutions (Mittal et al., 2018). 

Table 2 shows a summary of the challenges. 

Table2. Key Challenges in Biogas Prediction and Suggested Solutions 

Challenge Cause Effect on Prediction Proposed Solution 

Incomplete or 

noisy data 
Sensor errors, data gaps Lower accuracy, unstable outputs 

Data cleaning, imputation, sensor 

calibration 

Nonlinear process 

behavior 
Complex biochemical reactions Poor model fit, misprediction 

Use of ANN, LSTM, or hybrid 

AI models 

Low substrate 

degradability 

Lignocellulosic or fatty 

feedstocks 
Fluctuating biogas yield 

Pre-treatment (thermal, 

chemical, ultrasonic) 

Lack of real-time 

data 
No integrated monitoring Delayed or outdated forecasts 

IoT-based monitoring, real-time 

LSTM models 

Poor model 

generalization 
Plant-specific training data Limited transferability 

Transfer learning, hybrid 

modeling 

Infrastructure 

limitations 

Technical or financial 

constraints 
Low adoption of prediction tools Policy support, funding schemes 

Weak 

collaboration 
Gaps between sectors Redundant efforts, limited impact 

Shared platforms, research-

industry linkages 
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CRITICAL REVIEW OF EXISTING 

STUDIES 

Recent studies have demonstrated significant 

progress in predicting biogas production using 

advanced machine learning algorithms, including 

ANN, LSTM, and SVR. These algorithms 

provide high accuracy in biogas yield prediction 

due to their ability to model nonlinear and time-

dependent behaviors in anaerobic digestion 

systems. For example, a study using a 

combination of ANN and genetic algorithm, 

using real-time data from environmental and 

process sensors, reported a correlation coefficient 

of 0.85 and an operational efficiency of 78.2% 

(Gouiza et al., 2024). Also, hybrid models that 

integrate artificial intelligence with physics-

based knowledge or statistical methods have 

improved the robustness and interpretability of 

the models. For example, Mathur et al. used a 

combination of Random Forest and ANN models 

to predict chemical oxygen demand (COD) of 

wastewater, achieving a coefficient of 

determination (R²) of 0.96, which is significantly 

superior to traditional methods (Mathur et al., 

2024). 

However, a critical review of the existing 

studies reveals several key limitations. First, 

heterogeneity in the selection of input variables, 

such as pH, temperature, or organic loading rate 

(OLR), and differences in data resolution (e.g., 

hourly versus daily data) make it difficult to 

compare models directly. For example, Tryhuba 

et al. used Random Forest and Gradient Boosting 

to predict biogas from household waste, reporting 

a mean absolute error of 0.088 with optimal 

feature selection and dimensionality reduction 

(Tryhuba et al., 2024). However, this study 

focused on household data and may not be 

generalizable to industrial wastewater. Second, 

the risk of overfitting in complex models such as 

ANNs is a serious challenge, especially in small 

datasets (fewer than 1000 samples). Mukasine et 

al. demonstrated that ANNs perform well on 

high-dimensional data (R² = 0.92) (Mukasine et 

al., 2023). However, without fine-tuning of 

hyperparameters (e.g., number of layers), the risk 

of overfitting increases, especially in industrial 

settings with noisy data. Third, the lack of 

validation at an industrial scale, as seen in Isenkul 

et al. limits the transferability of models to real 

power plants. In addition to technical challenges, 

environmental and ethical issues related to the 

application of AI in biogas forecasting have 

received less attention (Isenkul et al., 2025). One 

of the main concerns is the carbon footprint 

resulting from the heavy computation required by 

deep learning models, such as convolutional 

networks (CNNs) or LSTMs. For example, 

Kasulla et al. used CNNs to predict microbial 

activity, but these models require high-power 

computing infrastructure (e.g., GPUs with more 

than 1000 W of power), which can conflict with 

biogas sustainability goals. One study estimated 

that training a deep learning model can produce 

several tons of CO₂, which poses an 

environmental paradox in the context of biogas, 

which aims to reduce greenhouse gas emissions 

(Kasulla et al., 2025). It is suggested that lighter 

models, such as LightGBM or TinyML, that run 

on low-power devices, be investigated to reduce 

the carbon footprint. From an ethical perspective, 

IoT systems that are used to collect real-time data 

(e.g., temperature and pH) pose data privacy risks 

(Aguida et al., 2021; Dewi et al., 2024). This data, 

which includes operational information from 

biogas plants, can be vulnerable to misuse if not 

adequately protected. Utilizing blockchain 

technology to securely and transparently store 

data can help mitigate this problem. Equal access 

to AI technologies is also a significant challenge. 

Advanced models such as ANN and AutoML 

may be inaccessible to small plants or developing 

countries due to high infrastructure costs, which 

can exacerbate regional inequalities. The 

development of open-source frameworks and 

low-cost models, such as Edge AI, can make 

these technologies accessible to resource-poor 

communities. 

In summary, advanced AI algorithms, such as 

ANN, LSTM, and hybrid models, have great 

potential for modeling the complex behavior of 

biogas systems. However, limitations such as 

data heterogeneity, overfitting, and lack of 

industrial validation prevent the full exploitation 

of these technologies. Environmental (carbon 

footprint) and ethical (privacy, equitable access) 

issues also require further attention. Future 

directions should focus on developing sustainable 

and accessible models, standardizing data, and 

integrating physics-based knowledge with 
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machine learning to provide more accurate and 

equitable predictions for biogas production. 

RESEARCH GAPS AND FUTURE 

DIRECTIONS 

Despite significant advances in AI-driven 

biogas prediction, several critical research gaps 

continue to limit the scalability, generalizability, 

and operational value of current forecasting 

models. 

1. Limited Robustness Under Dynamic 

Conditions 

Although models such as ANN and RF have 

shown high accuracy, their performance often 

degrades under fluctuating feedstock 

characteristics and operational variability. 

Improving model resilience in dynamic 

environments remains a key challenge (Isenkul et 

al., 2025). 

2. Challenges in Multisource Data 

Integration 

Biogas production depends on variables such 

as pH, temperature, hydraulic retention time, and 

substrate composition—often collected from 

heterogeneous sources. The lack of standardized 

frameworks for integrating this multisource data 

reduces model efficiency and accuracy (Adeoba 

et al., 2025; Clifford et al., 2025). 

3. Underutilization of Hybrid 

Optimization Techniques 

Although hybrid approaches using optimization 

algorithms like PSO show promise, their 

application in real-time process optimization is 

still underdeveloped. Future research should 

explore how to better combine neural networks 

and evolutionary algorithms to enhance biogas 

yield (Kasulla et al., 2025). 

4. Lack of Uncertainty Quantification 

Most AI models provide only point predictions, 

which limits their usefulness in operational 

planning. Methods such as Box-Cox 

transformation and LUBE offer probabilistic 

forecasting and should be integrated to support 

decision-making under uncertainty (Dittmer et 

al., 2021). 

5. Limited Industrial-Scale Validation 

Many models are trained and validated on lab-

scale datasets, which reduces their reliability 

when deployed in full-scale biogas plants. 

Industrial validation under real-world conditions 

is critical for model generalizability and long-

term adoption (Gaikwad et al., 2025; Isenkul et 

al., 2025). 

CONCLUSIONS 

This review found that AI has great potential to 

optimize anaerobic digestion processes and 

enhance biogas as a sustainable source of 

renewable energy by providing advanced tools 

for predicting biogas production. A recent 

literature review suggests that machine learning 

models such as Random Forest and ANN are 

superior in modeling nonlinear and dynamic 

behaviors of biogas systems. Hybrid models, by 

combining the advantages of statistical methods 

and AI, have improved prediction accuracy and 

paved the way for reducing operational costs and 

increasing sustainability. However, obstacles 

such as inadequate data quality, biochemical 

complexities, and limitations in model 

generalizability remain challenging. By 

identifying these shortcomings, this research 

proposes innovative solutions, including 

leveraging real-time data from the Internet of 

Things (IoT), developing hybrid models, and 

utilizing transfer learning. Future directions 

should focus on industrial validation of models, 

strengthening interdisciplinary collaborations, 

and integrating with environmental policymaking 

to make AI a key tool for achieving sustainable 

energy goals and a greener future. 
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