Abbasian Ardakani, A., Mohammadi, A., Mirza‐Aghazadeh‐Attari, M., Faeghi, F., Vogl, T. J., & Acharya, U. R. (2023). Diagnosis of Metastatic Lymph Nodes in Patients With Papillary Thyroid Cancer: A Comparative Multi‐Center Study of Semantic Features and Deep Learning‐Based Models.
Journal of Ultrasound in Medicine,
42(6), 1211-1221.
https://doi.org/10.1002/jum.16131
Alban, L., Agger, J., & Lawson, L. (1996). Lameness in tied Danish dairy cattle: the possible influence of housing systems, management, milk yield, and prior incidents of lameness.
Preventive veterinary medicine,
29(2), 135-149.
https://doi.org/10.1016/S0167-5877(96)01066-5
Alsaaod, M., Schaefer, A. L., Büscher, W., & Steiner, A. (2015). The role of infrared thermography as a non-invasive tool for the detection of lameness in cattle.
Sensors,
15(6), 14513-14525.
https://doi.org/10.3390/s150614513
Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., & Benjamins, R. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.
Information fusion,
58, 82-115.
https://doi.org/10.1016/j.inffus.2019.12.012
Bagheri, N., Aghdam, M. J., & Ebrahimi, H. (2024). Estimating Nitrogen and Chlorophyll Content in Corn Using Spectral Vegetation Indices Derived From UAV Multispectral Imagery.
Biomechanism and Bioenergy Research,
3(1), 81-93.
https://doi.org/10.22103/BBR.2024.23234.1082
Barkema, H. W., Westrik, J. D., van Keulen, K. A. S., Schukken, Y. H., & Brand, A. (1994). The effects of lameness on reproductive performance, milk production and culling in Dutch dairy farms.
Preventive veterinary medicine,
20(4), 249-259.
https://doi.org/10.1016/0167-5877(94)90058-2
Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W. (2018). Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a python package).
Neurocomputing,
307, 72-77.
https://doi.org/10.1016/j.neucom.2018.03.067
Green, L. E., Hedges, V. J., Schukken, Y. H., Blowey, R. W., & Packington, A. J. (2002). The Impact of Clinical Lameness on the Milk Yield of Dairy Cows.
Journal of Dairy Science,
85(9), 2250-2256.
https://doi.org/10.3168/jds.S0022-0302(02)74304-X
Jia, Z., Zhao, Y., Mu, X., Liu, D., Wang, Z., Yao, J., & Yang, X. (2025). Intelligent Deep Learning and Keypoint Tracking-Based Detection of Lameness in Dairy Cows.
Veterinary Sciences,
12(3), 218.
https://doi.org/10.3390/vetsci12030218
Jiang, B., Song, H., & He, D. (2019). Lameness detection of dairy cows based on a double normal background statistical model.
Computers and Electronics in Agriculture,
158, 140-149.
https://doi.org/10.1016/j.compag.2019.01.025
Melendez, P., Bartolome, J., Archbald, L. F., & Donovan, A. (2003). The association between lameness, ovarian cysts and fertility in lactating dairy cows.
Theriogenology,
59(3), 927-937.
https://doi.org/10.1016/S0093-691X(02)01152-4
Merkin, A., Krishnamurthi, R., & Medvedev, O. N. (2022). Machine learning, artificial intelligence and the prediction of dementia.
Current Opinion in Psychiatry,
35(2), 123-129.
https://doi.org/10.1097/YCO.0000000000000768
Ogundari, K., & Bolarinwa, O. D. (2018). Impact of agricultural innovation adoption: a meta‐analysis.
Australian Journal of Agricultural and Resource Economics,
62(2), 217-236.
https://doi.org/10.1111/1467-8489.12247
Oliveira, D. F., Vismari, L. F., Nascimento, A. M., de Almeida, J. R., Cugnasca, P. S., Camargo, J. B., Almeida, L., Gripp, R., & Neves, M. (2021). A new interpretable unsupervised anomaly detection method based on residual explanation.
IEEE Access,
10, 1401-1409.
https://doi.org/10.1109/ACCESS.2021.3137633
Peng, J., Zhao, Z., & Liu, D. (2022). Impact of Agricultural Mechanization on Agricultural Production, Income, and Mechanism: Evidence From Hubei Province, China [Original Research].
Frontiers in Environmental Science,
10, 838686.
https://doi.org/10.3389/fenvs.2022.838686
Ryu, H. W., & Tai, J. H. (2022). Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever.
Journal of Veterinary Science,
23(1), e17.
https://doi.org/10.4142/jvs.21252
Schlageter-Tello, A., Bokkers, E. A., Koerkamp, P. W. G., Van Hertem, T., Viazzi, S., Romanini, C. E., Halachmi, I., Bahr, C., Berckmans, D., & Lokhorst, K. (2014). Manual and automatic locomotion scoring systems in dairy cows: A review.
Preventive veterinary medicine,
116(1-2), 12-25.
https://doi.org/10.1016/j.prevetmed.2014.06.006
Shrestha, A., Loukas, C., Kernec, J. L., Fioranelli, F., Busin, V., Jonsson, N., King, G., Tomlinson, M., Viora, L., & Voute, L. (2018). Animal Lameness Detection With Radar Sensing.
IEEE Geoscience and Remote Sensing Letters,
15(8), 1189-1193.
https://doi.org/10.1109/LGRS.2018.2832650
Sprecher, D., et al., Hostetler, D. E., & Kaneene, J. (1997). A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance.
Theriogenology,
47(6), 1179-1187.
https://doi.org/10.1016/S0093-691X(97)00098-8
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7464–7475.
https://doi.org/10.1109/CVPR52729.2023.00721
Wu, D., Wu, Q., Yin, X., Jiang, B., Wang, H., He, D., & Song, H. (2020). Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector.
Biosystems Engineering,
189, 150-163.
https://doi.org/10.1016/j.biosystemseng.2019.11.017