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ABSTRACT 

Lameness in cattle, characterized by abnormal stride and gait, poses 

significant economic and welfare challenges in agriculture. Traditional 

visual inspections lack accuracy and scalability, prompting the 

development of transparent computer vision-based detection systems. 

This study leverages a dataset of 170 cattle videos from public sources 

and the University of Tehran’s Cattle Farm, preprocessed into 1226 one-

second sub-clips (416×416 pixels, 25 FPS) to mitigate noise from 

unpredictable cattle behavior. Using the YOLOv7 model, we extracted 

35 temporal features, including step sizes, speed, acceleration, and 

relative head-to-leg coordinates, focusing on the cattle’s head, legs, and 

back. These features were further engineered using time-series 

characterization techniques and hypothesis testing, yielding 3773 

features. A deep learning model, trained on these features, achieved 

88.66% accuracy and 93.74% AUC, while a Light Gradient Boosting 

Machine model on engineered features reached 81.3% accuracy and 

90.8% AUC. Sensitivity analysis highlighted leg and head-related 

features as critical for lameness detection. By emphasizing interpretable 

features and robust modeling, this approach enhances transparency, 

improving animal welfare and farm productivity under diverse 

conditions. 
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INTRODUCTION 

Recent technological advancements have 

brought about a transformative shift in the 

agricultural sector, ushering in improvements in 

productivity, sustainability, and resilience 

(Ogundari & Bolarinwa, 2018; Peng et al., 2022). 

Embracing these innovations has become 

imperative to unlock agriculture's full potential 

(Ogundari & Bolarinwa, 2018). One notable area 

influenced by cutting-edge technologies is the 

timely and accurate diagnosis of animal diseases, 

crucial for effective treatment and economic loss 

prevention (Ryu & Tai, 2022). 

The early detection and diagnosis of lameness 

in cattle is of particular significance. Lameness is 

characterized by abnormal stride and gait, often 

accompanied by pain (Schlageter-Tello et al., 

2014). Neglecting lameness can result in 

substantial economic repercussions, such as 

premature culling (Barkema et al., 1994), 

diminished milk production (Alban et al., 1996; 

Green et al., 2002; Warnick et al., 2001), weight 

loss (Huxley, 2013), reduced fertility (Melendez 

et al., 2003), decreased slaughter value, and 

increased treatment costs(Ettema & Østergaard, 

2006). Farmers and experts have traditionally 

relied on visual inspections to detect animal 

lameness. However, this method's accuracy and 

scalability are limited, prompting the 

development of intelligent detection systems 

(Flower & Weary, 2006). To address these 

limitations, a focus on non-intrusive methods has 

emerged as a valuable approach, with computer 

vision leading the way due to its minimal 

disruption of natural animal behavior, accuracy, 

accessibility, and cost-effectiveness (Alsaaod et 

al., 2015; Bagheri et al., 2024). 

Research efforts have explored various 

approaches in this domain. One study employed 

a 3-dimensional depth camera to capture crucial 

aspects of cows' movement during walking, with 

the recorded key regions subsequently used to 

generate signals representing cow movement. 

                                                      
1 Support Vector Machine 
2 Local Circulation Center Compensation Tracking 
3 Distilling Data of K-Nearest Neighbor 
4 K-Nearest Neighbor 

This approach ultimately enabled the 

implementation of an early detection system for 

lame cows using a linear SVM1 classifier, 

achieving a commendable accuracy rate of 95.7% 

(Abdul Jabbar et al., 2017). Another study 

gathered radar data from the front, back, and side 

of cows moving through the milking parlor 

corridor in three distinct directions. After 

denoising the radar data and extracting significant 

features, these were combined with veterinarian-

conducted animal identification results. A SVM 

classifier was then employed for lameness 

detection, yielding an accuracy of 85% for dairy 

cows (Shrestha et al., 2018).  

A lameness detection approach proposed by 

(Jia et al., 2025) integrated LCCCT2 and 

DSKNN3. Their methodology involved 

decomposing videos, using LCCCT to extract 

upper contour pixel regions, and analyzing head 

and neck tilt data with DSKNN. By applying the 

KNN4 algorithm to the processed data, they 

achieved a strong detection rate suitable for 

lameness classification. In a related approach, a 

detection method based on a double normal 

background statistical model was introduced. 

This model’s structure and parameters were 

derived by analyzing and tracking pixel changes 

associated with dairy cows and their gait 

characteristics, enabling effective lameness 

detection (Jiang et al., 2019).  

Further innovation came with the use of the 

YOLOv35 deep learning algorithm for intelligent 

lameness identification in cattle. The method 

analyzed cow videos, detected legs using 

YOLOv3, computed relative step size, and 

generated a feature vector. A classification model 

trained with LSTM6 on this characteristic vector 

achieved an impressive accuracy of 98.79%, 

outperforming classifiers such as SVM, KNN, 

and DTC7 (Wu et al., 2020). 

Despite their high accuracy, a common 

drawback of many of these techniques is their 

reputation as "black boxes," mainly because they 

5 You Only Look Once version 3 
6 Long Short-Term Memory 
7 Decision Tree Classification 
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often fail to provide transparent explanations for 

their underlying mechanisms. This limitation, in 

turn, hinders their adaptability and undermines 

their trustworthiness (Lecun et al., 2015). In an 

AI-dominated era marked by a lack of 

transparency in models, this research aims to 

demystify the opaque nature of intelligent 

lameness detection techniques, offering a clearer 

understanding of how they operate. Such 

transparency is crucial, as it is a pressing concern 

across various fields relying on machine learning 

(Abbasian Ardakani et al., 2023; Arrieta et al., 

2020; Merkin et al., 2022; Oliveira et al., 2021; 

Schmid & Finzel, 2020). This research seeks to 

unravel the intricacies of lameness detection and 

has direct implications for animal health and 

welfare. 

Further refinement of lameness detection 

methods can profoundly impact the diagnosis and 

treatment of lameness in animals, ultimately 

enhancing their overall well-being and 

productivity. However, it is crucial to 

acknowledge the inherent challenges in treating 

and preventing lameness disorders, with the 

prognosis not always consistently favorable. 

These difficulties can limit the potential benefits 

of automated lameness detection. Achieving a 

positive outcome relies heavily on our 

comprehension of lameness, which is nearly 

impossible without the necessary insights.  

Therefore, our study investigates key visual 

features through advanced feature extraction 

techniques and employs multiple statistical 

models to enhance the transparency and 

interpretability of intelligent lameness detection 

systems. Unlike previous research, which often 

relies on opaque "black-box" models with limited 

explainability, our approach innovatively 

prioritizes transparency by dissecting the core 

components of lameness detection and 

elucidating how learning algorithms process 

visual data. A key advantage of this study lies in 

its novel modeling strategy, which uses minor 

sequences (one-second video sub-clips) to 

mitigate the noise introduced by unpredictable 

                                                      
1 YouTube 
2 Kaggle 

cattle behaviors, such as irregular step sizes or 

sudden stops. This method improves detection 

accuracy and robustness across diverse farm 

environments compared to existing approaches 

that struggle with such variability. Additionally, 

our comprehensive feature extraction, focusing 

on critical attributes like cattle step sizes, speed, 

acceleration, and relative head-to-leg 

coordinates, provides a more interpretable and 

reliable framework for lameness detection. By 

offering clear insights into the inner workings of 

these models, our research not only advances the 

accuracy and resilience of automated lameness 

detection but also sets a new standard for 

trustworthy AI systems in animal welfare 

applications. 

MATERIALS AND METHODS 

Study Population 

The dataset used in this study consists entirely 

of video data. We collected this data from two 

primary sources: publicly available online 

platforms and a controlled cattle farm 

environment. Public data was gathered from 

resources such as YouTube1, Kaggle2, GitHub3, 

and similar open-access platforms, providing a 

diverse range of cattle videos under various 

environmental and management conditions. 

Additionally, we obtained high-quality video 

recordings from the Cattle Farm of the College of 

Agriculture & Natural Resources at the 

University of Tehran4, located in Karaj at the 

foothills of the central Alborz Mountains, Iran. 

These recordings focused exclusively on the 

Holstein Friesian breed. The final dataset 

integrates the publicly sourced videos and the 

farm-recorded samples, resulting in a 

comprehensive and diverse video dataset 

covering multiple cattle breeds and settings. 

Pre-Processing 

This study consists of two primary 

components, each necessitating distinct data 

types. The components include an Object 

3 Github 
4 University of Tehran 

file:///C:/Users/alikh/AppData/Roaming/Microsoft/Word/youtube.com
file:///C:/Users/alikh/AppData/Roaming/Microsoft/Word/kaggle.com
file:///C:/Users/alikh/AppData/Roaming/Microsoft/Word/github.com
https://ut.ac.ir/en
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Detection System and a Lameness Detection. 

Therefore, in this section, we will delve into the 

data preparation methods for each of these 

components. 

Data for Object Detection System 

We primarily collected data in video format. 

Our initial step to prepare this data for our Object 

Detection component involved extracting frames 

from a randomly chosen subset of these videos. 

During the frame extraction process, we utilized 

a Laplacian Filter, a commonly employed tool for 

detecting sharp edges in images. This filtering 

method helped us remove any blurry frames. This 

approach excluded frames with sharpness levels 

below a specific empirically determined 

threshold1. 

Furthermore, we implemented a Similarity 

Comparison Technique to remove redundant 

images that added little value. To accomplish 

this, we leveraged OpenAI's CLIP Model, 

specifically CLIP-ViT-B-32. This model 

encoded the images, enabling us to compare them 

against one another. This comparison yielded a 

list of pairs with the highest Cosine Similarity 

Scores (CSS). Images with a CSS score above our 

empirically established threshold of 0.93 were 

flagged as duplicates and promptly removed. 

After pre-processing the frames, we 

constructed a dataset consisting of 428 images. 

We used an approximately 90/10 split, selecting 

                                                      
1 For each image, the Laplacian variance is calculated and if the 

Laplacian variance is below the predefined threshold of 100, the 
corresponding image file is removed. 

386 images for training and reserving the 

remaining 42 for testing. This ratio was chosen to 

maximize the amount of data available for 

training, which is often beneficial in computer 

vision tasks with limited datasets. While an 80/20 

split is more commonly used in general machine 

learning, a 90/10 split is more appropriate in this 

context to help the model learn more effectively 

from a small dataset. 

All images were resized uniformly to 416 × 

416 pixels. This specific resolution was chosen to 

strike a balance between computational 

efficiency and sufficient spatial resolution for 

detecting relatively small body parts. Higher 

resolutions such as 640 or 1280 pixels were 

considered, but they would have significantly 

increased memory usage and processing time 

without a meaningful gain in detection 

performance for our use case. 

The images were annotated using Roboflow’s 

annotation tool. Each image contains a total of six 

bounding boxes corresponding to three object 

classes: four instances of “Leg,” one instance of 

“Head,” and one instance of “Back.” The 

bounding boxes used were standard axis-aligned 

rectangles, which are compatible with most 

object detection models. The reasoning behind 

selecting these three classes is explained in the 

following sections. Figure 1 shows an example of 

these annotated images. 
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Figure 1. An annotated Cattle Image; featuring four annotation boxes for "Leg," one for "Head," and one for "Back." 

Image: A- displays the original size of the image, while Image B- depicts the image resized to dimensions of 416 x 416. 

Data for Lameness Detection System 

A Locomotion Score (LS) is a measure of 

lameness in cattle, and two commonly used LS 

systems are the three-point system and the five-

point system (Sprecher et al., 1997). The five-

point system can be transformed into a three-

point system, where LS scores of 1 and 2 in the 

five-point system correspond to a score of 1 in the 

three-point system. A score of 3 in the five-point 

system is equivalent to a score of 2 in the three-

point system, and scores of 4 and 5 in the five-

point system correspond to a score of 3 in the 

three-point system. 

In this study, each video collected featured a 

single cattle, so the number of cattle investigated 

in this research matched the number of videos. 

These videos were initially assessed using both 

the three-point and five-point LS systems. Videos 

initially measured using the five-point system 

were converted to the three-point system. In the 

three-point system, a score of 1 indicates healthy 

cattle, where lameness is not noticeable; hence, 

the cattle are considered healthy. Scores of 2 and 

3 in the three-point system indicate lame cattle. 

After standardizing all the videos to the same LS 

system, we categorized them as either lame or 

healthy based on the scoring system. A score of 1 

                                                      
1 Source 1 refers to the part of the dataset that was collected from 

publicly available sources across the internet. 

was classified as representing a healthy animal, 

while scores of 2 and 3 were classified as 

indicating lameness. 

Subsequently, we resized all the videos to a 

uniform size of 416 × 416 pixels and ensured they 

played at 25 frames per second (FPS). Please 

refer to Table 1 for a comprehensive overview of 

the dataset, its divisions, and other relevant 

properties. 

Table 1 - Lameness Detection Dataset Properties. This 

table shows the train/test split configurations, 

subsequently utilized in preparing the dataset for feature 

extraction. 

Slicing Count Healthy Lame 

Source 11 104 59 45 

Source 22 66 57 9 

All 170 116 54 

Training 150 106 44 

Testing 20 10 10 

Feature Extraction 

We employed the YOLOv7 object detection 

model (Wang et al., 2023) for our object detection 

algorithm, specifically leveraging the pre-trained 

weights provided by the YOLOv7 repository and 

explicitly using the YOLOv7-X variant. The 

training was performed on a Linux environment 

2 Source 2 refers to the part of the dataset that was collected from 

the Cattle Farm associated with the College of Agriculture & 
Natural Resources at the University of Tehran. 
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using a Tesla T4 GPU1, over 200 epochs with a 

batch size of 32. We utilized transfer learning, 

starting from the official pre-trained weights and 

fine-tuning on our custom data. The training was 

conducted using the default hyperparameters 

specified in the official YOLOv7 

implementation, which includes the SGD2 

optimizer, a learning rate of 0.01, momentum of 

0.937, and a weight decay of 0.0005. 

Subsequently, we divided the videos into 

smaller sub-clips to prepare the lameness 

detection dataset for feature extraction. Given the 

unpredictable nature of cattle behavior while 

walking, for instance, variations in step size, 

speed, and occasional stops at irregular intervals, 

we created sub-clips with a duration of one 

second, equivalent to 25 frames or time steps. 

This decision was made to reduce data 

interference. 

Figure 2 illustrates the irregularities in cattle 

movement patterns. While the seasonal patterns3 

in the data remain consistent over time, the 

variability in step size introduces noise that can 

cause the lameness detection algorithm to 

misclassify healthy cattle as lame, as lameness is 

often associated with shorter strides. By selecting 

one-second sub-clips for the videos, we aimed to 

minimize this noise, enabling the lameness 

detection algorithm to better capture the 

underlying seasonal correlations, even when 

dealing with shortened strides. 

As a result of splitting the original videos into 

one-second sub-clips, we created 1226 video 

segments. Of these, 1074 were included in the 

training set, and 152 were allocated to the testing 

set. Table 2 displays the complete properties of 

the processed dataset utilized for feature 

extraction. 

 

                                                      
1 Graphics Processing Unit 
2 Stochastic Gradient Descent 

Table 2 - Feature Extraction Dataset Properties. The 

train/test split shown is identical to the configuration 

presented in Table 1. 

Slicing Count Healthy Lame 

Source 1 857 369 488 

Source 2 369 328 41 

All 1226 697 529 

Training 1074 616 458 

Testing 152 81 71 

We generated features by inputting the 

preprocessed video clips into the object detection 

system and recording the results as [x, y] 

coordinates representing the center points of the 

predicted bounding boxes. These features 

displayed temporal characteristics, as they were 

derived from sequential frames. 

Following this, we designed a Python script to 

refine the acquired data, reshaping the structure 

of the recorded features. The resulting processed 

files were structured with 25 time steps and 12 

distinct features. These features encompassed the 

x and y coordinates for the cattle's Head, Back, 

and four Legs, with each attribute stored in a 

separate column. 

Figure 2. Changes in the step size of a single healthy 

cattle measured in pixels within a 3-second time frame. 

In the case of identifying the front legs from the 

rear legs, we considered five possible scenarios. 

If no leg was detected or the number of detected 

legs was one or two, we set all corresponding 

features to zeroes. When three legs were detected, 

3 Seasonal patterns entail recurrent variations or trends in data that 

follow a consistent pattern over specific intervals, irrespective of the 
nature of those intervals. 
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we used the head position to distinguish the front 

legs from the rear legs, setting the two legs closest 

to each other while considering the other two as 

zeroes. If all four legs were detected, we again 

used the head coordinates to distinguish the front 

legs from the rear legs, adjusting all the values 

accordingly. This method effectively eliminated 

directional complications from the cattle's 

moving direction, whether moving from the right 

of the video to the left or vice versa. 

We then derived additional features from the 

extracted [x, y] coordinates. The complete list of 

these features and their descriptions are shown in Table 

3. 

Table 3 - The Complete List of Features Extracted For Lameness Detection1. 

Feature Name Description 

xhead x coordinate of the centroid of the cattle’s head 

yhead y coordinate of the centroid of the cattle’s head 

xback x coordinate of the centroid of the cattle’s back 

yback y coordinate of the centroid of the cattle’s back 

xlegFrontFirst x coordinate of the centroid of the cattle’s first front leg 

ylegFrontFrist y coordinate of the centroid of the cattle’s first front leg 

xlegFrontSecond x coordinate of the centroid of the cattle’s second front leg 

ylegFrontSecond y coordinate of the centroid of the cattle’s second front leg 

xlegRearFirst x coordinate of the centroid of the cattle’s first rear leg 

Feature Name Description 

ylegRearFirst y coordinate of the centroid of the cattle’s first rear leg 

xlegRearSecond x coordinate of the centroid of the cattle’s second rear leg 

ylegRearSecond y coordinate of the centroid of the cattle’s second rear leg 

FRS2 The step size of the front legs 

RRS3 The step size of the rear legs 

HB4 Position of the head to the back 

FFHead5 Position of the first front leg to the head 

SFHead6 Position of the second front leg to the head 

FRHead7 Position of the first rear leg to the head 

SRHead8 Position of the second rear leg to the head 

FFBack Position of the first front leg to the back 

SFBack Position of the second front leg to the back 

FRBack Position of the first rear leg to the back 

SRBack Position of the second rear leg to the back 

InsSpeed - FRS/Frame Instantaneous speed of the front legs with FRS/Frame unit 

InsSpeed - RRS/Frame Instantaneous speed of the rear legs with RRS/Frame unit 

InsSpeed - Overall Overall instantaneous speed of the cattle 

InsAcceleration - FRS/Frame Instantaneous acceleration of the front legs 

InsAcceleration - RRS/Frame Instantaneous acceleration of the rear legs 

InsAcceleration - Overall Overall instantaneous acceleration of the cattle 

AvgSpeed - FRS/Frame The average speed of the front legs 

AvgSpeed - RRS/Frame The average speed of the rear legs 

AvgSpeed - Overall The overall average speed of the cattle 

AvgAcceleration - FRS/Frame The average acceleration of the front legs 

AvgAcceleration - RRS/Frame The average acceleration of the rear legs 

AvgAcceleration - Overall The overall average acceleration of the cattle 

                                                      
1 The names are written as how they were used in the codes. 
2 Front Relative Step-Size 
3 Rear Relative Step-Size 
4 Head Back 

5 First Front Head 
6 Second Front Head 
7 First Rear Head 
8 Second Rear Head 
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Feature Engineering and Analysis 

We developed a deliberately lightweight deep‐

learning model to isolate and quantify the 

contribution of each engineered feature to cattle 

lameness detection shown in Figure 3. The 

network begins with an LSTM layer that 

summarizes temporal dynamics into a compact 

hidden state. This s followed by a pooling 

operation that reduces dimensionality and noise, 

and then a single 1D convolutional layer that 

extracts the most salient temporal patterns. A 

second pooling stage further concentrates these 

features before they are passed to fully connected 

perceptron layers for final modeling and binary 

classification. 

The reason for this simple design such as using 

only one convolutional layer—as opposed to 

stacking multiple layers—was intentional. Since 

the focus of this study is on feature analysis rather 

than optimizing predictive accuracy, we 

prioritized model interpretability and feature 

impact visibility. A deeper architecture with 

additional convolutional layers would have 

increased the model’s capacity, making it harder 

to isolate the effect of individual features. In 

contrast, a smaller model ensures that each 

feature has a relatively larger influence on the 

model’s behavior. This design choice helps us 

better understand the role and importance of each 

feature, which would be significantly diluted in a 

more complex, high-capacity model. 

Before conducting the sensitivity analysis, we 

first trained the deep learning model using the full 

features. We trained the model for 150 epochs 

with 32 batches on a Core i7 CPU in a Linux 

environment, using the Adam optimizer with a 

learning rate of 0.001. 

Then, we trained and tested each feature 

separately using the deep learning model and the 

same hardware and hyperparameters. 

 
Figure 3. Deep Learning Model Architecture. The 

model was developed using Python, Tensorflow and 

Keras. 

To further explore the impact of individual 

features, we employed a time-series feature 

extraction method using Hypothesis Testing, as 

outlined in (Christ et al., 2018). This method 

extracts a comprehensive set of statistical and 

mathematical features from time-series data 

based on significance tests to retain only the most 

relevant ones. Combining 63 distinct time-series 

characterization techniques, we transformed the 

initial lameness dataset—comprising 1226 

samples and 35 manually selected features—into 

a structured dataset with 1226 rows and 27,406 

columns, each representing a newly generated 

feature. These features encapsulated various 

aspects of the time-series sequences, including 

the number of peaks, average or maximal values, 

and more intricate characteristics like the time-
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reversal symmetry statistic. The method we used 

for feature generation is detailed in (Christ et al., 

2018). 

Subsequently, we carried out a feature 

selection step to remove features that lacked a 

statistically significant relationship with the 

target variable. This process involved applying 

univariate hypothesis testing, where each 

extracted feature was independently evaluated for 

its correlation with the labels. Features that did 

not meet a predefined statistical significance 

threshold (p-value < 0.05) were discarded. The 

threshold was chosen based on standard statistical 

convention to control the false discovery rate 

while retaining informative features. 

After feature selection, we applied additional 

preprocessing steps to prepare the data for 

analysis. These included standardizing the feature 

values to have zero mean and unit variance, and 

removing constant or near-constant features that 

provided no discriminative power. 

Standardization, in particular, was essential to 

ensure that features with different numerical 

ranges contributed equally to the learning 

process. These preprocessing steps helped 

improve the stability and performance of the 

models by reducing redundancy and ensuring the 

data was in a suitable format for training. 

Following these preprocessing steps, we 

arrived at a dataset with dimensions 1226 × 3773 

(Samples × Features), each feature bearing a 

prefix indicating its origin from the original 

feature. Using this feature-engineered dataset, we 

assessed the effectiveness of these engineered 

features by training and evaluating multiple 

models with identical hardware and train/test split 

configurations as those used in the deep learning 

model. Furthermore, in the final analysis, we 

quantified the contribution of each new feature to 

the model's overall predictive capability by 

counting how many newly derived features were 

associated with each original feature. 

 

                                                      
1 This section excludes certain metrics as they were solely used for 
supplementary assessment. 

Evaluation Metrics1 

Accuracy 

The accuracy metric assesses how frequently 

predictions match the actual labels. Eq. (1) 

displays the formula for calculating accuracy:  

Accuracy = 
TP + TN

TP + TN + FP + FN
 (1) 

In Eq. (1), 

TP (True Positives) shows an outcome 

where the algorithm correctly predicts the 

positive class. 

TN (True Negatives) shows an outcome 

where the algorithm correctly predicts the 

negative class. 

FP (False Positives) shows an outcome 

where the algorithm incorrectly predicts the 

positive class. 

FN (False Negatives) shows an outcome 

where the algorithm incorrectly predicts the 

negative class. 

Mean Average Precision 

Mean Average Precision (mAP) is a metric 

used to measure the performance of a model for 

tasks such as object detection and is calculated 

across all classes, considering various 

Intersection over Union (IoU) thresholds. It is 

defined as: 

mAP = 
1

n
 ∑ APₖ

    n

k = 1

 (1) 

Where, n is the number of classes and APk is 

the AP of class k. 

IoU, or Intersection over Union, is defined as: 

IoU  = 
Area of Intersection

Area of Union
 (2) 

Where 

Area of Intersection refers to the shared 

area between the predicted and ground truth 

bounding boxes. 

Area of Union represents the total area 

covered by both bounding boxes. 



64 

 

AP, which stands for Average Precision, 

quantifies the area under the precision-recall 

curve and is defined as: 

AP = ∫ p(r)dr
  1

0

 (4) 

Here, p(r) signifies precision at a given recall 

level r 

And Precision is the proportion of true positive 

predictions among all positive predictions, while 

recall is the proportion of true positive 

predictions among all actual positives and are 

defined as: 

Precision  = 
TP

TP + FP
 (5) 

Recall = 
TP

TP + FN
 (6) 

AUC 

A ROC Curve1 s a graphical representation that 

illustrates how well a classification algorithm 

performs across various classification thresholds. 

This curve is characterized by two key 

parameters: 

1. True Positive Rate (Recall). 

2. False Positive Rate, which is defined as: 

FPR = 
FP

FP + TN
 (7) 

AUC, or Area under the ROC Curve, quantifies 

the entire area beneath the ROC curve, spanning 

from the origin (0, 0) to the point (1, 1). This 

metric is particularly valuable when an imbalance 

exists between different classes within the 

dataset. Class imbalances in real-world scenarios 

are common, causing traditional accuracy metrics 

to exhibit bias towards the dominant class and 

yield unreliable results. The utilization of the 

AUC metric effectively mitigates this bias and 

renders the evaluation metric nearly immune to 

the effects of class imbalance. 

RESULTS AND DISCUSSION 

After training, the object detection model 

achieved a mean Average Precision (mAP) of 

99.6% in accurately identifying various parts of 

the cattle’s body. This score was calculated using 

the COCO2 evaluation metric, mAP@0.5:0.95, 

which averages performance across multiple IoU 

thresholds ranging from 0.5 to 0.95 in steps of 

0.05. Unlike fixed-threshold evaluations, this 

metric provides a more comprehensive measure 

of both localization and classification accuracy 

by assessing model performance across a 

spectrum of overlap requirements. 

This means the model was highly effective in 

both locating and correctly classifying each 

targeted body part across different samples, 

demonstrating strong performance in precision 

and recall. The training and evaluation3 processes 

are shown in Figures 4 through 7.

 

                                                      
1 Receiver Operating Characteristic Curve 
2 COCO 
33 Due to the structure and constraints of the framework and 

pipeline used for training, the term testing refers to the validation 
phase — that is, evaluating the model on a held-out validation set. 

Since no hyperparameter tuning was performed or necessary in this 

case, the validation set effectively served as the testing set. The 
results shown here are therefore from the validation phase and are 

intended to visualize how the model’s accuracy evolved during 

training. It’s important to note that evaluation is used here in a 

broader sense, distinct from training, validation, or testing, and 
refers to the general process of assessing the model’s performance 

— in line with the Cambridge Dictionary definition: “the process 

of judging or calculating the quality, importance, amount, or value 

of something.” 

https://cocodataset.org/
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Figure 4. Training Losses for Object Detection Model. The left plot illustrates the box loss, while the center and right 

plots depict the class and object losses, respectively, for the Object Detection model. 

 

 

 
Figure 5. Evaluation Losses for Object Detection Model. The left plot illustrates the box loss, while the center and right 

plots depict the class and object losses, respectively, for the Object Detection model. 

During the training process, the focus is 

directed towards reducing three key losses—box 

loss, class loss, and object loss— as depicted in 

Figures 4 and 5. The minimization of box loss 

enhances the model's precision in aligning 

predicted bounding boxes with the actual 

positions of objects in images. Simultaneously, 

diminishing class loss is crucial for accurately 

assigning class labels to detected objects. 

Additionally, reducing object loss helps the 

model adeptly distinguish between regions 

containing objects and those without. Due to the 

intricate characteristics of deep learning models, 

unraveling specific aspects of these models poses 

a significant challenge, which is a key focal point 

of our paper. Nonetheless, the notable uptick in 

the object loss in Figure 5 could suggest a subtle 

overfitting issue despite the decreasing trend in 

the other two losses. This phenomenon could be 

associated with hyperparameters, such as the 

learning rate and their values as they evolve 

throughout training. 
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Figure 6. Object Detection Model Evaluation mAP. 

 

 
Figure 7. Object Detection Model Evaluation Precision, Recall. 

Figures 6 and 7 depict the model's performance 

across various training epochs. The graphs 

commence with a low value in all the plots and 

exhibit a nearly consistent upward trend. The 

abrupt fluctuations observed in all plots may be 

attributed to the model making final adjustments 

to pre-trained weights just before reaching 

convergence. Figure 8 shows a few of the 

predicted bounding boxes. 



67 

 

 
Figure 8. Object Detection Model Predictions. 

After training the deep learning model using all 

features, it achieved an 88.66% accuracy and a 

93.74% AUC. Figure 9 shows visual 

representations of the model's training and 

evaluation performance, including loss, accuracy, 

and AUC. The sensitivity analysis results for the 

training and test sets are shown in Table 4, 

Figures 10 and 11.  
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Table 4 - Sensitivity Analysis Results Using the Deep Learning Model. 

Feature Name 
Train 

Loss 

Train 

Accuracy 

Train 

AUC 

Test 

Loss 

Test 

Accuracy 

Test 

AUC 

xhead 0.646 0.622 0.659 0.666 0.573 0.644 

yhead 0.640 0.626 0.681 0.604 0.626 0.741 

xback 0.666 0.595 0.623 0.672 0.560 0.569 

yback 0.649 0.578 0.627 0.687 0.506 0.540 

xlegFrontFirst 0.641 0.625 0.672 0.673 0.573 0.616 

ylegFrontFrist 0.650 0.610 0.647 0.699 0.579 0.597 

xlegFrontSecond 0.638 0.614 0.671 0.714 0.600 0.571 

ylegFrontSecond 0.653 0.613 0.653 0.691 0.613 0.576 

xlegRearFirst 0.558 0.669 0.761 0.662 0.560 0.623 

ylegRearFirst 0.644 0.595 0.653 0.666 0.606 0.641 

xlegRearSecond 0.507 0.694 0.802 0.678 0.553 0.590 

ylegRearSecond 0.657 0.593 0.634 0.670 0.586 0.638 

FRS 0.471 0.769 0.853 0.813 0.666 0.706 

RRS 0.560 0.703 0.771 0.628 0.646 0.722 

HB 0.651 0.589 0.631 0.691 0.519 0.515 

Feature Name 
Train 

Loss 

Train 

Accuracy 

Train 

AUC 

Test 

Loss 

Test 

Accuracy 

Test 

AUC 

FFHead 0.617 0.626 0.709 0.630 0.686 0.705 

SFHead 0.621 0.644 0.703 0.633 0.660 0.693 

FRHead 0.641 0.613 0.669 0.634 0.613 0.658 

SRHead 0.642 0.613 0.657 0.642 0.600 0.645 

FFBack 0.630 0.622 0.663 0.703 0.553 0.556 

SFBack 0.630 0.630 0.704 0.687 0.540 0.564 

FRBack 0.609 0.645 0.714 0.697 0.626 0.631 

SRBack 0.626 0.632 0.687 0.690 0.573 0.613 

InsSpeed - FRS/Frame 0.452 0.739 0.851 0.634 0.680 0.763 

InsSpeed - RRS/Frame 0.540 0.735 0.804 0.560 0.713 0.782 

InsSpeed - Overall 0.476 0.760 0.842 0.574 0.713 0.797 

InsAcceleration - 

FRS/Frame 
0.429 0.787 0.879 0.752 0.693 0.751 

InsAcceleration - 

RRS/Frame 
0.462 0.761 0.859 0.673 0.639 0.708 

InsAcceleration - 

Overall 
0.515 0.732 0.815 0.627 0.646 0.714 

AvgSpeed - FRS/Frame 0.613 0.660 0.716 0.609 0.706 0.760 

AvgSpeed - RRS/Frame 0.643 0.648 0.677 0.631 0.653 0.694 

AvgSpeed - Overall 0.619 0.650 0.717 0.630 0.646 0.700 

AvgAcceleration - 

FRS/Frame 
0.565 0.717 0.777 0.553 0.713 0.788 

AvgAcceleration - 

RRS/Frame 
0.549 0.714 0.793 0.553 0.693 0.788 

AvgAcceleration - 

Overall 
0.509  0.760 0.826 0.559 0.720 0.782 

The sensitivity analysis findings from the deep 

learning model revealed that features associated 

with the head and legs of cattle exerted the most 

substantial influence on the model's performance. 

These results imply that the condition of a cattle's 

head and legs plays a essential role in assessing 

lameness. Additionally, these particular features 

exhibited relatively minor losses compared to 

other features. 

The comparison of results from models trained 

on the feature-engineered dataset revealed that 

the Light Gradient Boosting Machine model 
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outperformed all other models, achieving the 

highest accuracy of 81.3% and an AUC of 90.8% 

subsequently confirming the validity of the 

engineered features. Table 5 displays the models' 

results on the feature-engineered features. The 

top 10 engineered features with the highest 

impact are also illustrated in Figure 10. 

 

 

Figure 9. Deep Learning Model Results Using the Full Set of Features 

Figure 10. Top 10 Most Important Engineered Features. 

Analyzing the feature count revealed that the 

original features with more filtered features 

(engineered features) had a more significant 

impact on the detection task. Figure 11 

demonstrates these results.  
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Figure 11. Contribution of Each Original Feature to Lameness Detection. The numbers indicate how many engineered 

features belong to the original features. 

Table 5 - Results of the Models on the Feature-

Engineered Test Set; Sorted by Accuracy. 

Model Name Accuracy AUC 

Light Gradient Boosting 

Machine 
0.813 0.908 

Extreme Gradient Boosting 0.806 0.904 

Random Forest Classifier 0.793 0.885 

Logistic Regression 0.773 0.877 

Ada Boost Classifier 0.773 0.874 

Extra Trees Classifier 0.766 0.916 

Gradient Boosting Classifier 0.760 0.883 

SVM - Linear Kernel 0.740 0.743 

K Neighbors Classifier 0.660 0.730 

Decision Tree Classifier 0.653 0.659 

Ridge Classifier 0.640 0.626 

Quadratic Discriminant 

Analysis 
0.553 0.550 

Dummy Classifier 0.533 0.500 

Linear Discriminant Analysis 0.520 0.512 

Naive Bayes 0.466 0.500 

Examining the engineered features affirmed 

the significant influence of head and leg-related 

characteristics on accurately detecting cattle 

lameness. This discovery underscores the pivotal 

role of the head and legs in ascertaining lameness 

in cattle. Furthermore, the findings revealed that 

positional attributes such as the cattle's speed, 

acceleration, and body coordinates were the most 

vital factors for the detection process. 

While the primary aim of this study was to 

enhance interpretability rather than outperform 

existing systems in terms of raw accuracy, it is 

still instructive to reflect on our results in light of 

prior work. Previous approaches such as (Abdul 

Jabbar et al., 2017) and (Wu et al., 2020) reported 

higher classification accuracies, reaching up to 

95.7% and 98.79% respectively. However, these 

methods often rely on specialized hardware (e.g., 

depth cameras) or black-box deep learning 

models with limited insight into feature-level 

contributions. In contrast, our approach achieved 

a respectable accuracy of 88.66% and an AUC of 

93.74%, while providing detailed sensitivity 

analyses and feature engineering that clarify the 

influence of specific visual features on detection 

performance. The relatively lower accuracy is an 

acceptable tradeoff for the transparency gained, 

particularly as our results consistently 

highlighted leg movement patterns and head–leg 

positional relationships as key indicators of 

lameness. This aligns with biomechanical 

expectations and existing veterinary 

understanding. Moreover, the engineered features 

derived from time-series analysis contributed 

significantly to model performance, reinforcing 

the biological relevance of temporal gait 
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characteristics. The importance of features such 

as instantaneous acceleration and step size further 

supports the notion that early signs of lameness 

manifest through subtle movement deviations, 

which are effectively captured through our 

interpretable framework. 

CONCLUSIONS 

Based on our study, we found that 

unpredictable animal behaviors are the leading 

cause of noise that affects the performance of 

intelligent detection systems, making it difficult 

to make accurate predictions. To address this 

issue, we suggest using a modeling approach that 

involves minor sequences or features. This 

approach helps mitigate sudden cattle behaviors, 

improve accuracy, and make the model more 

resilient to environmental factors typically 

encountered on farms. By reducing the detection 

window, these systems can be trained to operate 

well under varying conditions and with diverse 

input data, given the unreliability of data due to 

the challenging farm environment.  

Our research indicates that the most significant 

features for intelligent lameness detection are 

those related to the cattle's legs and head or a 

combination of both. While these features have 

traditionally been used individually to design 

intelligent lameness detection systems, our 

conclusion highlights the potential for greater 

accuracy and robustness. We have also identified 

that factors such as cattle step sizes (strides), 

speed, acceleration (calculated using 

Displacement per Frame), and the relative 

coordinates of the head to each leg significantly 

influence the detection task. Therefore, we can 

achieve superior and more resilient results by 

focusing on and incorporating these specific 

features into system design. 

Our study thoroughly investigated the 

fundamental visual features necessary for 

advancing lameness detection systems, focusing 

on balancing robustness and accuracy. It 

prioritized transparency and reliability, 

recognizing the paramount importance of these 

                                                      
30 University of Tehran 

factors, mainly when dealing with living beings 

such as animals. 
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