Aghbashlo, M., Hosseinpour, S., & Ghasemi-Varnamkhasti, M. (2014). Computer vision technology for real-time food quality assurance during drying process. Trends in Food Science and Technology, 39(1), 76–84. https://doi.org/10.1016/j.tifs.2014.06.003
Aghilinategh, N., Rafiee, S., Hosseinpour, S., Omid, M., & Mohtasebi, S. S. (2016). Real-time color change monitoring of apple slices using image processing during intermittent microwave convective drying. Food Science and Technology International, 22(7), 634–646. https://doi.org/10.1177/1082013216636263
Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2021). Electrohydrodynamic drying of foods: Principle, applications, and prospects. Journal of Food Engineering, 295, 110449. https://doi.org/10.1016/j.jfoodeng.2020.110449
Bashkir, I., Defraeye, T., Kudra, T., & Martynenko, A. (2020). Electrohydrodynamic Drying of Plant-Based Foods and Food Model Systems. Food Engineering Reviews, 12(4), 473–497. https://doi.org/10.1007/s12393-020-09229-w
Benalia, S., Cubero, S., Prats-Montalbán, J. M., Bernardi, B., Zimbalatti, G., & Blasco, J. (2016). Computer vision for automatic quality inspection of dried figs (Ficus carica L.) in real-time. Computers and Electronics in Agriculture, 120, 17–25. https://doi.org/10.1016/j.compag.2015.11.002
Bora, G. C., Pathak, R., Ahmadi, M., & Mistry, P. (2018). Image processing analysis to track colour changes on apple and correlate to moisture content in drying stages. Food Quality and Safety, 2(2), 105–110. https://doi.org/10.1093/fqsafe/fyy003
Esehaghbeygi, A., Pirnazari, K., & Sadeghi, M. (2014). Quality assessment of electrohydrodynamic and microwave dehydrated banana slices. Lwt -Food Science and Technology, 55(2), 565–571. https://doi.org/10.1016/j.lwt.2013.10.010
Gao, K., Zhou, L., Bi, J., Yi, J., Wu, X., Zhou, M., Wang, X., & Liu, X. (2017). Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure drop-assisted hot-air drying (AD-DIC). Journal of the Science of Food and Agriculture, 97(8), 2533–2540. https://doi.org/10.1002/jsfa.8070
Ghaitaranpour, A., Rastegar, A., Tabatabaei Yazdi, F., Mohebbi, M., & Alizadeh Behbahani, B. (2017). Application of Digital Image Processing in Monitoring some Physical Properties of Tarkhineh during Drying. Journal of Food Processing and Preservation, 41(2), e12861. https://doi.org/10.1111/jfpp.12861
Hosseinpour, S., Rafiee, S., Aghbashlo, M., & Mohtasebi, S. S. (2015). Computer Vision System (CVS) for In-Line Monitoring of Visual Texture Kinetics During Shrimp (Penaeus Spp.) Drying. Drying Technology, 33(2), 238–254. https://doi.org/10.1080/07373937.2014.947513
Hosseinpour, S., Rafiee, S., Mohtasebi, S. S., & Aghbashlo, M. (2013). Application of computer vision technique for on-line monitoring of shrimp color changes during drying. Journal of Food Engineering, 115(1), 99–114. https://doi.org/10.1016/j.jfoodeng.2012.10.003
Iranshahi, K., Onwude, D. I., Martynenko, A., & Defraeye, T. (2022). Dehydration mechanisms in electrohydrodynamic drying of plant-based foods. Food and Bioproducts Processing, 131, 202–216. https://doi.org/10.1016/j.fbp.2021.11.009
Keramat-Jahromi, M., Mohtasebi, S. S., Mousazadeh, H., Ghasemi-Varnamkhasti, M., & Rahimi-Movassagh, M. (2021). Real-time moisture ratio study of drying date fruit chips based on on-line image attributes using kNN and random forest regression methods.
Measurement,
172, 108899.
https://doi.org/10.1016/j.measurement.2020.108899
Kırbaş, İ., Tuncer, A. D., Şirin, C., & Usta, H. (2019). Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches. Computers and Electronics in Agriculture, 165, 104928. https://doi.org/10.1016/j.compag.2019.104928
Martynenko, A. (2017). Computer Vision for Real-Time Control in Drying. Food Engineering Reviews, 9, 91–111. https://doi.org/10.1007/s12393-017-9159-5
Martynenko, A., Astatkie, T., Riaud, N., Wells, P., & Kudra, T. (2017). Driving forces for mass transfer in electrohydrodynamic (EHD) drying. Innovative Food Science and Emerging Technologies, 43, 18–25. https://doi.org/10.1016/j.ifset.2017.07.022
Martynenko, A., & Kudra, T. (2016). Electrically-induced transport phenomena in EHD drying - A review. Trends in Food Science and Technology, 54, 63–73. https://doi.org/10.1016/j.tifs.2016.05.019
Martynenko, A., & Zheng, W. (2016). Electrohydrodynamic drying of apple slices: Energy and quality aspects. Journal of Food Engineering, 168, 215–222. https://doi.org/10.1016/j.jfoodeng.2015.07.043
Miraei Ashtiani, S. H., Rohani, A., & Aghkhani, M. H. (2020). Soft computing-based method for estimation of almond kernel mass from its shell features. Scientia Horticulturae, 262, 109071. https://doi.org/10.1016/j.scienta.2019.109071
Miraei Ashtiani, S. H., Sturm, B., & Nasirahmadi, A. (2018). Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices. Heat and Mass Transfer, 54, 915–927. https://doi.org/10.1007/s00231-017-2187-0
Mirzaei-Baktash, H., Hamdami, N., Torabi, P., Fallah-Joshaqani, S., & Dalvi-Isfahan, M. (2022). Impact of different pretreatments on drying kinetics and quality of button mushroom slices dried by hot-air or electrohydrodynamic drying. Lwt, 155, 112894. https://doi.org/10.1016/j.lwt.2021.112894
Nadian, M. H., Abbaspour‐Fard, M. H., Sadrnia, H., Golzarian, M. R., Tabasizadeh, M., & Martynenko, A. (2017). Improvement of kiwifruit drying using computer vision system (CVS) and ALM clustering method. Drying Technology, 35(6), 709–723. https://doi.org/10.1080/07373937.2016.1208665
Nadian, M. H., Rafiee, S., Aghbashlo, M., Hosseinpour, S., & Mohtasebi, S. S. (2015). Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food and Bioproducts Processing, 94, 263–274. https://doi.org/10.1016/j.fbp.2014.03.005
Okonkwo, C. E., Olaniran, A. F., Adeyi, A. J., Adeyi, O., Ojediran, J. O., Erinle, O. C., Mary, I. Y., & Taiwo, A. E. (2022). Neural network and adaptive neuro-fuzzy inference system modeling of the hot air-drying process of orange-fleshed sweet potato. Journal of Food Processing and Preservation, 46(3), e16312. https://doi.org/10.1111/jfpp.16312
Paul, A., & Martynenko, A. (2021). Electrohydrodynamic drying: Effects on food quality. Drying Technology, 39(11), 1745–1761. https://doi.org/10.1080/07373937.2021.1906694
Pirnazari, K., Esehaghbeygi, A., & Sadeghi, M. (2014). Assessment of quality attributes of banana slices dried by different drying methods. International Journal of Food Engineering, 10(2), 251–260. https://doi.org/10.1515/ijfe-2013-0059
Polat, A., & Izli, N. (2022a). Drying characteristics and quality evaluation of ‘Ankara’ pear dried by electrohydrodynamic-hot air (EHD) method. Food Control, 134, 108774. https://doi.org/10.1016/j.foodcont.2021.108774
Polat, A., & Izli, N. (2022b). Drying of garlic slices by electrohydrodynamic-hot air method. Journal of Food Process Engineering, 45(3), e13980. https://doi.org/10.1111/jfpe.13980
Pu, Y. Y., & Sun, D. W. (2017). Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution. Biosystems Engineering, 156, 108–119. https://doi.org/10.1016/j.biosystemseng.2017.01.006
Raj, G. V. S. B., & Dash, K. K. (2020). Microwave vacuum drying of dragon fruit slice: Artificial neural network modelling, genetic algorithm optimization, and kinetics study. Computers and Electronics in Agriculture, 178, 105814. https://doi.org/10.1016/j.compag.2020.105814
Shafaei, S. M., Nourmohamadi-Moghadami, A., & Kamgar, S. (2016). Development of artificial intelligence based systems for prediction of hydration characteristics of wheat. Computers and Electronics in Agriculture, 128, 34–45. https://doi.org/10.1016/j.compag.2016.08.014
Taghian Dinani, S., Hamdami, N., Shahedi, M., & Havet, M. (2014). Mathematical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices. Energy Conversion and Management, 86, 70–80. https://doi.org/10.1016/j.enconman.2014.05.010
Udomkun, P., Nagle, M., Argyropoulos, D., Wiredu, A. N., Mahayothee, B., & Müller, J. (2017). Computer vision coupled with laser backscattering for non-destructive colour evaluation of papaya during drying. Journal of Food Measurement and Characterization, 11, 2142–2150. https://doi.org/10.1007/s11694-017-9598-y