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ABSTRACT 

Khalal is a product of date palm fruit before full ripeness and has a higher 

moisture content than Rutab and fully ripened date fruit. This study deals 

with monitoring the real-time drying process of Khalal thin slices in a 

hybrid electro-hydrodynamic (EHD)-convective hot air dryer. The real-

time moisture ratio (MR) of Khalal slices was estimated with an 

intelligent online machine vision system and eliminating the 

conventional weighing system was investigated. For this purpose, the 

samples were photographed at specified time intervals during the drying 

process. An adaptive neuro-fuzzy inference system (ANFIS) was 

developed to extract real-time models for the drying process. The input 

features contained different combinations of the temperature of the 

chamber, air velocity, and drying time along with the L*, a*, and b* 

coefficients of the image were calculated at different times. The 

performance of the developed models was evaluated, and the best model 

was selected. The results revealed that the differential sigmoid 

membership function with six inputs can provide the best estimation for 

the moisture ratio (MR) of the product with the coefficient of 

determination of 0.988 and 0.987 for train and test data, respectively. 

Finally, it is concluded that the proposed online model can eliminate the 

need for an embedded weighing system through intelligent control of the 

EHD-convective dryer and provide a robust real-time prediction of the 

MR of Khalal thin slices. 
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INTRODUCTION 

Non-thermal electro-hydrodynamic (EHD) 

dryers are an excellent substitute for conventional 

thermal dryers with the advantages of drying 

materials at ambient pressure and temperature as 

well as better preservation of material properties 

(Anukiruthika et al., 2021; Martynenko et al., 

2017; Martynenko & Kudra, 2016). Although the 

EHD drying method is not fast compared to the 

microwave method, it is still a priority in terms of 

lower energy consumption and high quality of the 

dried product (Esehaghbeygi et al., 2014; 

Mirzaei-Baktash et al., 2022). EHD drying 

method has been studied in various state-of-the-

arts (Bashkir et al., 2020; Iranshahi et al., 2022; 

Paul & Martynenko, 2021; Polat & Izli, 2022a; 

Polat & Izli 2022b). Two important factors in 

determining the final quality of a dried product 

are its color and moisture content (Bora et al., 

2018). The color change is an inevitable 

consequence of a drying process which strongly 

impacts consumer acceptance (Udomkun et al., 

2017). The moisture content of the dried fruit or 

vegetable depends on the utilized drying method. 

Excessive drying results in shrinkage of the dried 

product, deteriorating its final quality (Bora et al., 

2018).  

Monitoring the quality of the product is of great 

importance during the drying process. Various 

studies have mentioned imaging technology as an 

efficient method to control and monitor product 

quality (Aghbashlo et al., 2014; Martynenko, 

2017). The quality of different products including 

kernels (Ghaitaranpour et al., 2017), mango (Pu 

& Sun, 2017), nectarine (Miraei Ashtiani et al., 

2018), apples (Aghilinategh et al., 2016; Gao et 

al., 2017; Nadian et al., 2015), papaya (Udomkun 

et al., 2017), kiwi (Nadian et al., 2017), fig 

(Benalia et al., 2016), and Shrimp (Hosseinpour 

et al., 2013; Hosseinpour et al., 2015) have been 

studied in various dryers via imaging systems. 

Several studies have considered the application of 

offline image processing in EHD dryers for 

monitoring color change in different fruits, 

including mushroom slices (Taghian Dinani et 

al., 2014), thin sheets of banana (Pirnazari et al., 

2014), and apple (Martynenko & Zheng, 2016). 

Intelligent control of the drying process can be 

achieved by introducing models that relate the 

product quality to the image characteristics. 

Some studies have been conducted to model the 

color properties of different products 

(Hosseinpour et al., 2013; Martynenko & Zheng, 

2016). 

Samples of the peel from pomelo fruit (Citrus 

maxima) were dried by freeze-drying (FD), 

forced convection (FCD), and microwave drying 

in two distinct thicknesses (Kırbaş et al., 2019). 

Experimental results revealed that thin samples 

dried in a shorter period in all drying methods. 

Then two models were developed with ANN and 

machine learning based on the experimental data 

for the mass-dependent parameters like moisture 

ratio and the drying time prediction. Microwave 

vacuum drying of dragon fruit slices with back-

propagation and feed-forward ANN was 

proposed (Raj & Dash, 2020). Sixty experiments 

were conducted and analysed for independent 

variables for genetic algorithm optimization. 

Prediction according to the ANN-GA model had 

an excellent agreement and slight deviation with 

experimental data (Shafaei et al., 2016), wheat's 

hydration characteristics (moisture ratio, 

moisture content, and hydration rate) were also 

examined with the help of ANFIS. 

This paper addresses the monitoring of the 

drying process of Shahani variety of date fruits in 

EHD dryers. A serious challenge of EHD dryers 

is the disturbance occurring in electrical systems 

due to the electric field and their high voltage. 

This makes the conventional weighing systems 

used in EHD dryers subject to noise. Thus, online 

monitoring of the drying process in EHD dryers 

by weighing the dried fruit to estimate its 

moisture content is very complicated. The main 

novelty of this study is addressing the problem of 

online monitoring of the EHD dryers by replacing 

the conventional weighing system with an 

intelligent online machine vision-based 

procedure. To this end, a system consisting of two 

units, i.e., image acquisition and processing unit, 

is developed. The acquisition unit captures 

images of the fruits in various stages of the drying 

process. The captured images are then 
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simultaneously processed in the processing unit 

via a machine vision-based model. In this model, 

the images are first transformed into L*a*b* 

color system. Then, an Adaptive Neuro-Fuzzy 

Inference System (ANFIS) model is used to 

predict the moisture content of the fruits using 

different sets of features. Finally, the accuracy of 

ANFIS model is compared with conventional 

non-linear regression models to select the best 

model for predicting moisture ratio of date fruit.   

MATERIALS AND METHODS 

In this study, a machine vision system is used 

to monitor the drying process of the collected date 

fruit samples. The developed system consists of 

two main units: the image processing unit and the 

processing unit. The image processing unit 

includes a Microsoft LifeCam Studio (Q2F-00 

013) 5 megapixel interpolated webcam with a 

resolution of 1920×1080 pixels, which was 

placed 30 cm above the sample tray to capture 

images during the drying process. The lighting 

system consists of LED lamps mounted at a 45-

degree angle above the sample tray to ensure 

uniform illumination. The processing unit 

controls the camera settings via a developed 

graphical user interface (GUI) and allows images 

to be captured and stored in real time. The images 

were captured every 300 seconds and stored in 

JPEG format (544×960 resolution, RGB 24-bit 

color space) for further analysis. A schematic 

representation of the experimental setup can be 

found in Figure 1, which visually illustrates the 

equipment and workflow. In the following 

sections, the drying process and the developed 

machine vision system are explained in detail. 

Sample preparation and drying 

In this paper, the drying process of Shahani 

variety of date fruits is studied. To this end, 

several palm trees from Jahrom city in Fars 

province of Iran were randomly chosen for the 

sampling of date fruits at the stage of Kharak 

(with an initial moisture content of 60 % d.b.). 

The collected samples were kept in nylon packs 

and refrigerated at 9 °C before the drying process 

(Martynenko & Zheng, 2016). 

To prepare the samples for drying, they were 

kept at room temperature for about three hours 

outside the refrigerator. Then, the date fruits were 

cut into 3 mm thin slices using a Bora Electric 

(Model 250, Iran) slicer. Each drying experiment 

based on Table 1 was conducted with 9 slices date 

fruits of an approximate total weight of 10 grams 

at three different temperatures (i.e., 25, 30, and 60 

°C), and three different levels of air velocity (0.5, 

1.0, and 1.5 m/s) (Keramat-Jahromi et al., 2021).  

Table 1. Experiments and operational parameters for drying process 

Experiment No. 1 2 3 4 5 6 7 8 9 

Temperature (°C) 25 25 25 30 30 30 60 60 60 

Air velocity (m/s) 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 

EHD (W) 1 1 1 1 1 1 1 1 1 

The EHD dryer consists of 16 needle electrodes 

40 mm long with a square arrangement of 30 mm 

apart. The thin layers of dates were placed 

between the needle electrodes so that they could 

be imaged from the top of the drying chamber. 

The distance between the end of the needle 

electrodes and the ground plate electrodes was 3 

cm. Ground plate electrodes were also made of 

copper plate 18 × 18 cm2. The power level of the 

device was set to 1.0W of a high-voltage source 

(Model D-RC Series, FanavaranNano-Meghyas, 

Iran), and the experiments were conducted in a 

full factorial design at room temperature of 25 °C. 

Each experiment was repeated three times and the 

drying was carried on to reduce the moisture ratio 

(MR) of the fruits to 0.2 (Keramat-Jahromi et al., 

2021).  

The Imaging Unit 

During the drying process, images of the 

samples were captured at regular time intervals 

and processed in real-time. The captured images 
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were saved in an RGB color format and later 

converted to the Lab* color space for better color 

representation. A background removal technique 

was applied to isolate the sample from the 

background, ensuring accurate feature extraction. 

The extracted color and texture features were then 

used as inputs for the Adaptive Neuro-Fuzzy 

Inference System (ANFIS) model to predict the 

moisture ratio (MR). The overall image 

acquisition and processing workflow is illustrated 

in Figure 1, providing a schematic representation 

of the methodology used in this study. 

 
 

Figure 1. The general scheme of the research and 

data collection 

The processing unit 

The processing unit exploited algorithms 

developed in MATLAB to simultaneously 

process the captured images. Initially, the 

obtained RGB color values were calibrated using 

a 24-color chart x-rite color checker. Next, to 

extract discriminative features from the captured 

images for analysing the moisture level of the 

dried date fruits, RGB images were transformed 

into L*a*b* color space. The L*a*b* is a very 

popular color space in the food industry due to its 

uniform distribution of colors and its similarity to 

human perception of colors. Then, Otsu 

thresholding was used to remove the background 

of the images. After eliminating the background 

of the images, four different sets of features were 

extracted based on Table 2. These extracted 

features were then introduced into an ANFIS 

model to estimate the MR of the date fruits. 

Adaptive neuro fuzzy inference system (ANFIS) 

has been used by numerous studies (Miraei 

Ashtiani et al., 2020; Okonkwo et al., 2022). The 

extracted features and the developed ANFIS 

model are described further. The performance of 

the developed model with a different set of 

features as input is analysed and compared in the 

next section. 
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Table 2. Extracted features as different entrance sets of ANFIS model to estimate MR 

Set 

No. 
Extracted features 

1 Temperature (T), air velocity (V), time (t) 

2 T, V, time,  �̅�∗(𝑡), �̅�∗(𝑡), and �̅�∗(𝑡) 
3 T, V, time,  �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡 − 1), �̅�∗(𝑡 − 1), and �̅�∗(𝑡 − 1) 

4 T, V, time,  �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡), �̅�∗(𝑡 − 1), �̅�∗(𝑡 − 1), �̅�∗(𝑡 − 1), �̅�∗(𝑡 − 2), �̅�∗(𝑡 − 2), 

and �̅�∗(𝑡 − 2) 

ANFIS, known as the adaptive neuro-fuzzy 

inference system, is an effective combination of 

artificial neural networks (ANN) and fuzzy logic. 

In the ANFIS model, the fuzzy inference system 

(FIS) is combined with the trainable 

characteristics of ANN to generate a trainable 

model with the generalization capability of fuzzy 

logic. ANFIS is structured as five layers, i.e., 

input fuzzification, fuzzy set database 

construction, fuzzy rule base construction, 

decision-making, and output defuzzification. The 

fuzzification process is performed through 

passing input data from membership functions. 

Then, a set of if-then rules is applied to obtain the 

output characteristics. The output defuzzification 

stage is performed using the output membership 

functions to reach a single-valued output or a 

decision associated with the output. The hybrid 

learning algorithm, which is a combination of 

back-propagation gradient descent and the least-

squares method, was used for training parameters 

of the fuzzy inference system (Miraei Ashtiani et 

al., 2020). Four different ANFIS models 

corresponding to four different feature sets were 

trained to predict the MR of the dried date fruits. 

Each of the developed ANFIS models was 

designed with six deferent membership functions, 

including the Gaussin (Gaussmf), bell (gbellmf), 

sigmoid (sigmf), differential sigmoid (dsig), 

multiply sigmoid (psig), and the S shape (smf) 

function, and the results were compared to choose 

the best model. 

Evaluating performance 

 The performance of the models is evaluated 

using five criteria, including the root mean square 

error (𝑅𝑀𝑆𝐸), mean absolute error (𝑀𝐴𝐸), 

relative absolute error (𝑅𝐴𝐸), coefficient of 

determination (𝑟2), and conformity index (𝑑), 

which are defined as follows (equations 2-1 to 2-

5, respectively): 

(1) 𝑅𝑀𝑆𝐸 = √
∑ (𝑦i − �̂�i)

2𝑛
𝑖=1

𝑛
 

(2) 𝑀𝐴𝐸 =
∑ |𝑦i − �̂�i|
𝑛
𝑖=1

𝑛
 

(3) 𝑅𝐴𝐸 =
∑ |𝑦i − �̂�i|
𝑛
𝑖=1

∑ |𝑦i − �̄�|
𝑛
𝑖=1

 

(4) 𝑟2 =

(

 
∑ (𝑦i − �̄�)
𝑛
𝑖=1 (�̂�i − �̄̂�)

∑ (𝑦i − �̄�)
𝑛
𝑖=1

√∑ (�̂�i − �̄̂�)
2𝑛

𝑖=1 )

 

2

 

(5) 

𝑑 = 1 −
∑ (𝑦i − �̂�i)

2𝑛
𝑖=1

∑ (|�̂�i − �̄�| + |𝑦i − �̄�|)
2𝑛

𝑖=1

 

 

In these equations, 𝑛 is the total number of 

data, 𝑦i denotes the real observed value of the MR 

of the i’th data, �̂�i shows the model’s predicted 

value of the MR, and �̄� and �̄̂� represent the mean 

values of the observed and predicted MR, 

respectively. 

 

RESULTS AND DISCUSSION 

In this section, the designed ANFIS models 

with different feature sets and different 

membership functions are tested and compared 

for estimating the MR of the dried date fruits. The 

prediction results of the MR for the four different 

sets of ANFIS inputs for training and test data are 

presented in Tables 3 and 4, respectively. Note 

that these results are relevant to the entire data set 

and are not limited to the specific speed and 

temperature of the experiment. The selection of 

the best ANFIS model was based on several 

evaluation measures, including the coefficient of 

determination (r²), root mean square error 

(RMSE), mean absolute error (MAE) and relative 
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absolute error (RAE). While some models 

achieved higher R² values and lower RMSE, we 

considered the generalization performance on the 

test data as a key factor for selecting the optimal 

model. 

In particular, models showing high R² values 

(0.99) and low RMSE during training, but 

suboptimal R² and RMSE during testing, 

displayed overfitting, resulting in a significant 

performance gap. To obtain a more generalizable 

and reliable model, we chose the ANFIS model 

with six inputs and the differential sigmoid (dsig) 

membership function, which provides a good 

balance between accuracy and robustness. This 

model had an r² of 0.988 for the training data and 

0.987 for the test data, along with a competitive 

RMSE of 0.025, ensuring stable performance 

under different experimental conditions. 

Comparison of the performance of models with 

three and six inputs indicates that the use of visual 

properties improves the estimation of the MR. In 

the ANFIS model with nine inputs, the 

differential sigmoid membership function again 

had the best performance. 

Table 3. Statistical indices of ANFIS model for predicting MR (training data) 

Model 

No. 

Number of 

entries 

Membership 

function 
d RAE RMSE MAE R2 

1 3 gaussmf 0.99997 0.080 0.042 0.015 0.966 

2 3 gbellmf 0.99996 0.014 0.052 0.027 0.947 

3 3 Dsigmf 0.99997 0.077 0.041 0.015 0.967 

4 3 Psigmf 0.99997 0.108 0.045 0.021 0.961 

5 3 Sigmf 0.99996 0.123 0.048 0.024 0.956 

6 3 Smf 0.99997 0.108 0.045 0.021 0.961 

7 6 gaussmf 0.99998 0.083 0.039 0.016 0.970 

8 6 gbellmf 0.99997 0.119 0.045 0.023 0.962 

9 6 dsigmf 0.99999 0.076 0.025 0.015 0.988 

10 6 Psigmf 0.99997 0.101 0.042 0.020 0.966 

11 6 Sigmf 0.99998 0.107 0.039 0.021 0.971 

12 6 Smf 0.99997 0.101 0.042 0.020 0.967 

13 9 gaussmf 0.99997 0.090 0.035 0.015 0.971 

14 9 gbellmf 0.99996 0.144 0.044 0.025 0.954 

15 9 Dsigmf 0.99999 0.083 0.025 0.014 0.985 

16 9 Psigmf 0.99997 0.112 0.040 0.019 0.961 

17 9 Sigmf 0.99998 0.116 0.034 0.020 0.973 

18 9 Smf 0.99998 0.079 0.027 0.014 0.983 

19 12 gaussmf 0.99997 0.109 0.034 0.017 0.965 

20 12 gbellmf 0.99996 0.152 0.038 0.024 0.957 

21 12 Dsigmf 0.99999 0.084 0.018 0.013 0.990 

22 12 Psigmf 0.99997 0.110 0.034 0.017 0.965 

23 12 Sigmf 0.99997 0.104 0.030 0.016 0.973 

24 12 Smf 0.99998 0.075 0.024 0.012 0.983 

        

According to the results, the ANFIS model 

with nine inputs was not as efficient as the model 

with six inputs. While increasing the number of 

inputs initially improved prediction accuracy, 

further increasing the number of inputs beyond 

six resulted in diminishing returns and potential 

overfitting. Although the differential sigmoid 

membership function in the 12-input ANFIS 

model showed the best performance during 

training (R2=0.99), it was not selected as the best 

model due to its poor generalization in the testing 

phase (R2=0.927), indicating overfitting to the 

training data. 

Figure 2 further illustrates this effect by 
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showing how the number of inputs affects the 

model’s performance on the test data. Figure 2(a) 

shows that R2 increases from 3 to 6 inputs and 

reaches a peak value, but decreases as more 

inputs are added. Similarly, Figure 2(b) shows 

that the RMSE decreases significantly from 3 to 

6 inputs, indicating a better fit. However, for 

more than six inputs, the RMSE increases, 

indicating that adding too many inputs leads to 

noise instead of improving the predictive power. 

Figure 3 and Figure4 display the distribution of 

estimated values and actual data by the 

differential sigmoidal function (dsig) in the six-

input ANFIS model for the training and test data, 

respectively. 

Figure 5 reveals a graph of the estimation of 

MR based on air velocity and time of experiment. 

Figure 6 presents the estimation of MR based on 

the experiment temperature and time, where the 

maximum MR is yellow and the minimum is 

blue. As seen in Figure 5, the final MR was set to 

0.2, which occurred at the maximum time, the end 

of the drying process, which is consistent with the 

test evidence. The corresponding airflow velocity 

corresponding to this minimum is estimated to be 

0.5 m/s. The maximum MR was estimated at zero 

at the beginning of the process at 1.5 m/s. 

According to Figure 6, the lowest MR has 

occurred at the maximum time and minimum 

temperatures. These values are perfectly 

consistent since the MR is inversely correlated 

with time and temperature while being directly 

related to the airflow rate. 

Table 4. Statistical indices of ANFIS model for predicting MR (test data) 

Model 

 No. 

Number 

 of entries 

Membership 

 function 
d RAE RMSE MAE R2 

1 3 gaussmf 0.99994 0.074 0.040 0.014 0.970 

2 3 Gbellmf 0.99991 0.013 0.050 0.027 0.955 

3 3 Dsigmf 0.99994 0.065 0.041  0.013 0.970 

4 3 Psigmf 0.99993 0.102 0.043 0.020 0.966 

5 3 Sigmf 0.99993 0.117 0.044 0.023 0.966 

6 3 Smf 0.99993 0.109 0.043 0.021 0.967 

7 6 gaussmf 0.99993 0.088 0.043 0.017 0.963 

8 6 Gbellmf 0.99991 0.123 0.049 0.023 0.954 

9 6 Dsigmf 0.99998 0.086 0.025 0.016 0.987 

10 6 Psigmf 0.99991 0.102 0.047 0.020 0.956 

11 6 Sigmf 0.99991 0.114 0.050 0.022 0.951 

12 6 Smf 0.99991 0.109  0.048 0.021 0.955 

13 9 gaussmf 0.99983 0.171 0.059 0.029 0.918 

14 9 Gbellmf 0.99989 0.175 0.046 0.030 0.949 

15 9 Dsigmf 0.99993 0.117 0.038 0.020 0.964 

16 9 Psigmf 0.99991 0.143 0.043 0.024 0.954 

17 9 Sigmf 0.9999 0.169 0.045 0.029 0.949 

18 9 Smf 0.99991 0.115 0.041 0.020 0.959 

19 12 gaussmf 0.99983 0.195 0.049 0.029 0.927 

20 12 Gbellmf 0.99961 0.263 0.073 0.039 0.939 

21 12 Dsigmf 0.99983 0.162 0.049 0.024 0.927 

22 12 Psigmf 0.99982 0.171 0.049 0.026 0.924 

23 12 Sigmf 0.99986 0.153 0.043 0.023 0.941 

24 12 Smf 0.99986 0.143 0.044 0.021 0.939 
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A B 
Figure 2. Effect of the number of input features on model performance for test data: (a) Coefficient of determination 

(R2), and (b) Root Mean Square Error (RMSE). 

 

 
Figure 3. The relationship between the observed and predicted MR using AFNIS model (training data)  
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Figure 4. The relationship between the observed and predicted MR using AFNIS model (test data)  

 

 
Figure 5. Modeling of MR based on interaction of air velocity and drying time 
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Figure 6. Modeling of MR based on interaction of temperature of chamber and drying time 

Figure 7 depicts the other graphs of the 

estimated MR values in the ANFIS model by a 

six-input differential sigmoidal function based on 

physical properties and an image property. As 

expected in this graph, the blue or minimum 

response points are modelled at higher times and 

temperatures. According to Figure7 (e), in the 

graph of the estimation of the MR based on 

temperature and a*, the maximum response 

variable at low temperature is predicted, while for 

higher values of a* it has a relatively higher 

value. 
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Figure 7. Estimation of MR based on interaction of (a) L* and drying time, (b) temperature of chamber and L*, (c) air 

velocity and L*, (d) a* and drying time, (e) temperature of chamber and a*, (f) air velocity and a*, (g) b* and drying time, 

(h) temperature of chamber and b*, and (i) air velocity and b* 

In order to evaluate the quality of developed 

model, several experimental and regression 

models were developed and compared with the 

ANFIS model to estimate the MR. Models 1-6 are 

experimental models. The best experimental 

model for prediction of MR is model 5, which has 

had a lower performance (R2=0.755) than ANFIS 

model (Table 5). 
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Table 5. Statistical indicators of experimental and regression models for prediction of MR (test data) 

Model 

No. 
Form Coefficients d RAE RMSE MAE   R2 

1 
𝑎 𝑒𝑥𝑝(−𝑘𝑡)

+ 𝑏 𝑒𝑥𝑝(−𝑔𝑡) 

a =0.499 6; k =0.051 5; 

b =0.469 3; g =0.004 8 
0.926 0.46 0.114 0.092 0.753 

2 a exp(−k𝑡) + c 
a = 0.678 6; k = 0.034 6; 

c = 0.274 7 
0.924 0.47 0.115 0.094 0.748 

3 1 + 𝑎𝑡 + 𝑏𝑡2 a =-0.016 5; b = 0.000 1 0.907 0.56 0.140 0.112 0.686 

4 
𝑎 exp(−𝑘𝑡) + (1

− 𝑎) exp(−𝑔𝑡) 

a = 0.497;  b = 0.005 4 ; 

g =0.058 9 
0.928 0.47 0.114 0.092 0.754 

5 

𝑎 𝑒𝑥𝑝(−𝑘𝑡)

+ 𝑏 𝑒𝑥𝑝(−𝑔𝑡)

+ 𝑐 exp (−ℎ𝑡) 

a = 2.638; b =0.533 9; 

c =-2.218; k =0.098 1; 

g =0.006 ; h =0.110 7; 

0.926 0.46 0.114 0.092 0.755 

6 
𝑎 𝑒𝑥𝑝(−𝑘𝑡)

+  𝑒𝑥𝑝(−𝑔𝑡) 

a = -0.042 9; k =5.252; 

g =0.017 5 
0.91 0.60 0.144 0.118 0.702 

7 𝑎0+𝑎1 𝑇+ 𝑎2 𝑉 + 𝑎3 𝑡 

a0=1.244 8;  a1=-0.008 

2;  

a2=-0.112 8; a3=-0.006 4 

0.944 0.38 0.101 0.076 0.806 

8 
𝑎0+𝑎1 𝑇+ 𝑎2 𝑉 + 𝑎3 𝑡 

+ 𝑎4 �̅�
∗+ 𝑎5  �̅�

∗ + 𝑎6  �̅�
∗ 

a0=6.488 8; a1=-0.005 6; 

a2=-0.109 ; a3=-0.005;  

a4=1.872 3; a5=-2.706 6; 

a6=-4.482 2 

0.957 0.35 0.090 0.069 0.847 

9 
𝑎0+𝑎1 𝑇+ 𝑎2 𝑉 + 𝑎3 𝑡 

+ 𝑎4 𝑇𝑡 

a0=1.045 5; a1=-0.002 1;  

a2=-0.120 6; a3=0.000 1;  

a4=-0.000 2 

0.973 0.29 0.073 0.058 0.899 

10 
𝑎0+𝑎1 𝑇+ 𝑎2 𝑉 + 𝑎3 𝑡 

+ 𝑎4 𝑉𝑡 

a0=1.134 7; a1=-0.008 4; 

a2=0.022 3; a3=-0.004 1;  

a4=-0.002 8 

0.954 0.35 0.092 0.069 0.838 

11 
𝑎0+𝑎1 𝑇+ 𝑎2 𝑉 + 𝑎3 𝑡 

+ 𝑎4 𝑇𝑡 +  𝑎5 𝑉𝑡 

a0=0.964 4; a1=-0.002 6;  

a2=-0.008 1; a3=0.001 7;  

a4=-0.000 2; a5=-0.002 3 

0.979 0.26 0.064 0.051 0.921 

 

The results of regression models in Table 5 

(models 7-12) indicate that model 11 has had the 

highest modelling performance (R2=0.921), 

which is still lower than ANFIS accuracy. Then, 

we conclude that the ANFIS model has 

outperformed the other models in predicting the 

MR.  

CONCLUSIONS 

The results of this study show that the inclusion 

of visual features in the ANFIS model 

significantly improves the accuracy of MR 

estimation during the drying process. In 

particular, the ANFIS model with six inputs and 

the differential sigmoid (dsig) membership 

function provided the best prediction 

performance with coefficients of determination 

(R2) of 0.988 for training data and 0.987 for test 

data. Increasing the number of inputs to nine and 

twelve initially improved training performance 

but resulted in lower generalization ability in the 

test phase, with the twelve-input model 

outperforming the training data (R2=0.99) but not 

generalizing well (R2=0.927). These results 

confirm that a balance between input complexity 

and model generalization is essential for robust 

MR prediction. Furthermore, the study highlights 

the potential of machine vision systems for real-

time monitoring of drying processes in EHD 

convection dryers. The developed ANFIS-based 

model offers a reliable alternative to conventional 

weighing systems, which are prone to noise 

interference. The ability to use image-based 

analysis for real-time quality control is an 
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important step towards intelligent and automated 

drying processes in the food industry. 
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