Effect of Gamma Rays, Electron Beams, and UV Radiation on Biopolymer Films for Food Packaging: A Comprehensive Review

Document Type : Review article

Authors

School of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran.

10.22103/bbr.2025.25699.1130

Abstract

The escalating demand for sustainable and biodegradable food packaging materials has propelled intensive research into biopolymer-based films derived from polysaccharides and proteins. Radiation processing technologies—including ionizing radiations such as gamma rays and electron beams, alongside non-ionizing ultraviolet (UV) light—have demonstrated significant potential in modulating the physicochemical, mechanical, thermal, antimicrobial, and barrier properties of these biopolymer films. Ionizing radiation facilitates chain scission, crosslinking, and structural rearrangements within polymer matrices, leading to enhanced tensile strength, reduced water uptake, improved crystallinity, and extended shelf-life of packaged foods, while UV irradiation predominantly induces surface photochemical modifications, augmenting hydrophobicity and antimicrobial efficacy without substantially altering chemical functionalities. Synergistic effects are often observed when irradiation is combined with bioactive compounds or nanomaterials, resulting in superior film performance and microbial inhibition; nonetheless, optimizing irradiation parameters is critical to balancing beneficial modifications against potential adverse effects such as color changes, mechanical degradation, or compromised food quality. This review, by uniquely integrating mechanistic insights with comparative analysis of ionizing and non-ionizing radiation, highlights underexplored synergies with bioactive agents and nanomaterials and proposes future directions for dose optimization, intelligent packaging design, and industrial scalability, thereby offering a novel and comprehensive perspective beyond existing reviews on radiation-assisted biopolymer films.

Keywords

Main Subjects


Abbasi, N. A., Ashraf, S., Ali, I., & Butt, S. J. (2015). Enhancing storage life of bell pepper by UV-C irradiation and edible coatings. Pakistan Journal of Agricultural Sciences, 52(2), 403-411.
Ahmad, M. I., Ab. Rahim, M. H., Nordin, R., Mohamed, F., Abu-Samah, A., & Abdullah, N. F. (2021). Ionizing radiation monitoring technology at the verge of internet of things. Sensors, 21(22), 7629. https://doi.org/10.3390/s21227629
Amin, U., Khan, M. U., Majeed, Y., Rebezov, M., Khayrullin, M., Bobkova, E., Shariati, M. A., Chung, I. M., & Thiruvengadam, M. (2021). Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. International journal of biological macromolecules, 183, 2184-2198. https://doi.org/10.1016/j.ijbiomac.2021.05.182
Amininasab, S. M. H., Hojjati, M., Noshad, M., & Soltani, M. (2024). Effect of UV-B irradiation and liquid smoke on physicochemical characterization of Salvia macrosiphon gum based edible films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 682, 132958. https://doi.org/10.1016/j.colsurfa.2023.132958
Ansari, I., & Datta, A. (2003). An overview of sterilization methods for packaging materials used in aseptic packaging systems. Food and Bioproducts Processing, 81(1), 57-65. https://doi.org/10.1205/096030803765208670
Apte, K., & Bhide, S. (2024). Basics of radiation. In Advanced radiation shielding materials (pp. 1-23). Elsevier.
Ardjoum, N., Shankar, S., Chibani, N., Salmieri, S., & Lacroix, M. (2021). In situ synthesis of silver nanoparticles in pectin matrix using gamma irradiation for the preparation of antibacterial pectin/silver nanoparticles composite films. Food Hydrocolloids, 121, 107000. https://doi.org/10.1016/j.foodhyd.2021.107000
Ashfaq, A., Clochard, M.-C., Coqueret, X., Dispenza, C., Driscoll, M. S., Ulański, P., & Al-Sheikhly, M. (2020). Polymerization reactions and modifications of polymers by ionizing radiation. Polymers, 12(12), 2877. https://doi.org/10.3390/polym12122877
Bahari, R., Shahbazi, Y., & Shavisi, N. (2020). Effect of gamma irradiation on physico‐mechanical and structural properties of active Farsi gum‐CMC films containing Ziziphora clinopodioides essential oil and lignocellulose nanofibers for meat packaging. Journal of Food Science, 85(10), 3498-3508. https://doi.org/10.1111/1750-3841.15456
Ben-Fadhel, Y., Cingolani, M. C., Li, L., Chazot, G., Salmieri, S., Horak, C., & Lacroix, M. (2021). Effect of γ-irradiation and the use of combined treatments with edible bioactive coating on carrot preservation. Food Packaging and Shelf Life, 28, 100635. https://doi.org/10.1016/j.fpsl.2021.100635
Benbettaïeb, N., Assifaoui, A., Karbowiak, T., Debeaufort, F., & Chambin, O. (2016). Controlled release of tyrosol and ferulic acid encapsulated in chitosan–gelatin films after electron beam irradiation. Radiation Physics and Chemistry, 118, 81-86. https://doi.org/10.1016/j.radphyschem.2015.01.035
Benbettaïeb, N., Chambin, O., Karbowiak, T., & Debeaufort, F. (2016). Release behavior of quercetin from chitosan-fish gelatin edible films influenced by electron beam irradiation. Food Control, 66, 315-319. https://doi.org/10.1016/j.foodcont.2016.02.027
BenBettaïeb, N., Karbowiak, T., Bornaz, S., & Debeaufort, F. (2015). Spectroscopic analyses of the influence of electron beam irradiation doses on mechanical, transport properties and microstructure of chitosan-fish gelatin blend films. Food Hydrocolloids, 46, 37-51. https://doi.org/10.1016/j.foodhyd.2014.09.038
Benbettaïeb, N., Karbowiak, T., Brachais, C.-H., & Debeaufort, F. (2015). Coupling tyrosol, quercetin or ferulic acid and electron beam irradiation to cross-link chitosan–gelatin films: A structure–function approach. European polymer journal 67, 113-127. https://doi.org/10.1016/j.eurpolymj.2015.03.060
Benbettaïeb, N., Karbowiak, T., Brachais, C.-H., & Debeaufort, F. (2016). Impact of electron beam irradiation on fish gelatin film properties. Food Chemistry, 195, 11-18. https://doi.org/10.1016/j.foodchem.2015.03.034
Bhat, R., & Karim, A. (2014). Towards producing novel fish gelatin films by combination treatments of ultraviolet radiation and sugars (ribose and lactose) as cross-linking agents. Journal of Food Science and Technology, 51, 1326-1333. https://doi.org/10.1007/s13197-012-0652-9
Chacha, J. S., Zhang, L., Ofoedu, C. E., Suleiman, R. A., Dotto, J. M., Roobab, U., Agunbiade, A. O., Duguma, H. T., Mkojera, B. T., & Hossaini, S. M. (2021). Revisiting non-thermal food processing and preservation methods—Action mechanisms, pros and cons: A technological update (2016–2021). Foods, 10(6), 1430. https://doi.org/10.3390/foods10061430
Chaudhary, S., Kumar, S., Kumar, V., Singh, B., & Dhiman, A. (2024). Irradiation: A tool for the sustainability of fruit and vegetable supply chain-Advancements and future trends. Radiation Physics and Chemistry, 217, 111511. https://doi.org/10.1016/j.radphyschem.2024.111511
Chen, B.-R., Roobab, U., Madni, G. M., Abdi, G., Zeng, X.-A., & Aadil, R. M. (2024). A review of emerging applications of ultrasonication in Comparison with non-ionizing technologies for meat decontamination. Ultrasonics Sonochemistry, 108, 106962. https://doi.org/10.1016/j.ultsonch.2024.106962
Chiozzi, V., Agriopoulou, S., & Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Applied Sciences, 12(4), 2202. https://doi.org/10.3390/app12042202
Chmielewski, A. G. (2023). Radiation technologies: the future is today. Radiation Physics and Chemistry, 213, 111233. https://doi.org/10.1016/j.radphyschem.2023.111233
Darré, M., Vicente, A. R., Cisneros-Zevallos, L., & Artés-Hernández, F. (2022). Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth. Foods, 11(5), 653. https://doi.org/10.3390/foods11050653
de Vargas, V. H., Marczak, L. D. F., Flôres, S. H., & Mercali, G. D. (2023). Morphology and functional properties of gelatin‐based films modified by UV radiation and bacterial cellulose nanofibers. Journal of Food Process Engineering, 46(9), e14399. https://doi.org/10.1111/jfpe.14399
Díaz, O., Candia, D., & Cobos, Á. (2016). Effects of ultraviolet radiation on properties of films from whey protein concentrate treated before or after film formation. Food Hydrocolloids, 55, 189-199. https://doi.org/10.1016/j.foodhyd.2015.11.019
Díaz, O., Candia, D., & Cobos, Á. (2017). Whey protein film properties as affected by ultraviolet treatment under alkaline conditions. International Dairy Journal, 73, 84-91. https://doi.org/10.1016/j.idairyj.2017.05.009
Dini, H., Fallah, A. A., Bonyadian, M., Abbasvali, M., & Soleimani, M. (2020). Effect of edible composite film based on chitosan and cumin essential oil-loaded nanoemulsion combined with low-dose gamma irradiation on microbiological safety and quality of beef loins during refrigerated storage. International journal of biological macromolecules, 164, 1501-1509. https://doi.org/10.1016/j.ijbiomac.2020.07.215
Ezati, P., Khan, A., Priyadarshi, R., Bhattacharya, T., Tammina, S. K., & Rhim, J.-W. (2023). Biopolymer-based UV protection functional films for food packaging. Food Hydrocolloids, 142, 108771. https://doi.org/10.1016/j.foodhyd.2023.108771
Fatehi, P., Alamouti, A., Behgar, M., & Norouzian, M. (2020). Effect of electron irradiation on some physical, chemical and digestion properties of pistachio by-products. Radiation Physics and Chemistry, 174, 108921. https://doi.org/10.1016/j.radphyschem.2020.108921
Fathi, N., Almasi, H., & Pirouzifard, M. K. (2018). Effect of ultraviolet radiation on morphological and physicochemical properties of sesame protein isolate based edible films. Food Hydrocolloids, 85, 136-143. https://doi.org/10.1016/j.foodhyd.2018.07.018
Guo, K., Baidak, A., & Yu, Z. (2020). Recent advances in green synthesis and modification of inorganic nanomaterials by ionizing and non-ionizing radiation. Journal of Materials Chemistry A, 8(44), 23029-23058. https://doi.org/10.1039/D0TA06742C
Guo, W., Mehrparvar, S., Hou, W., Pan, J., Aghbashlo, M., Tabatabaei, M., & Rajaei, A. (2024). Unveiling the impact of high-pressure processing on anthocyanin-protein/polysaccharide interactions: A comprehensive review. International Journal of Biological Macromolecules, 270, 132042. https://doi.org/10.1016/j.ijbiomac.2024.132042
Gürsu, H. (2024). Reusable Smart Lids for Improving Food Safety at Household Level with Programmable UV-C Technology. Sustainability, 16(13), 5370. https://doi.org/10.3390/su16135370
Huang, T., Fang, Z., Zhao, H., Xu, D., Yang, W., Yu, W., & Zhang, J. (2020). Physical properties and release kinetics of electron beam irradiated fish gelatin films with antioxidants of bamboo leaves. Food bioscience, 36, 100597. https://doi.org/10.1016/j.fbio.2020.100597
Indiarto, R., Irawan, A. N., & Subroto, E. (2023). Meat irradiation: A comprehensive review of its impact on food quality and safety. Foods, 12(9), 1845. https://doi.org/10.3390/foods12091845
Joshua Ajibola, O. (2020). An overview of irradiation as a food preservation technique. Novel Research in Microbiology Journal, 4(3), 779-789. https://doi.org/10.21608/nrmj.2020.95321
Kumar, A., Rani, P., Purohit, S. R., & Rao, P. S. (2020). Effect of ultraviolet irradiation on wheat (Triticum aestivum) flour: Study on protein modification and changes in quality attributes. Journal of Cereal Science, 96, 103094. https://doi.org/10.1016/j.jcs.2020.103094
Kurdziel, M., Łabanowska, M., Pietrzyk, S., Pająk, P., Królikowska, K., & Szwengiel, A. (2022). The effect of UV-B irradiation on structural and functional properties of corn and potato starches and their components. Carbohydrate polymers, 289, 119439. https://doi.org/10.1016/j.carbpol.2022.119439
Li, L., Chen, H., Wang, M., Lv, X., Zhao, Y., & Xia, L. (2018). Development and characterization of irradiated-corn-starch films. Carbohydrate polymers, 194, 395-400. https://doi.org/10.1016/j.carbpol.2018.04.060
Li, R., & Wu, G. (2020). Preparation of polysaccharide-based hydrogels via radiation technique. In Hydrogels based on natural polymers (pp. 119-148). Elsevier. https://doi.org/10.1016/B978-0-12-816421-1.00005-7
Lin, M. G., Lasekan, O., Saari, N., & Khairunniza-Bejo, S. (2017). The effect of the application of edible coatings on or before ultraviolet treatment on postharvested longan fruits. Journal of Food Quality, 2017(1), 5454263. https://doi.org/10.1155/2017/5454263
Liu, J., Song, F., Chen, R., Deng, G., Chao, Y., Yang, Z., Wu, H., Bai, M., Zhang, P., & Hu, Y. (2022). Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films. Carbohydrate polymers, 275, 118704.  https://doi.org/10.1016/j.carbpol.2021.118704
Manaila, E., Craciun, G., Ighigeanu, D., Lungu, I. B., Dumitru, M., & Stelescu, M. D. (2021). Electron Beam Irradiation: A method for degradation of composites based on natural rubber and plasticized starch. Polymers, 13(12), 1950. https://doi.org/10.3390/polym13121950
Mendes, J. F., Norcino, L. B., Manrich, A., Pinheiro, A. C. M., Oliveira, J. E., & Mattoso, L. H. C. (2020). Development, physical‐chemical properties, and photodegradation of pectin film reinforced with malt bagasse fibers by continuous casting. Journal of Applied Polymer Science, 137(39), 49178. https://doi.org/10.1002/app.49178
Mirzaee Moghaddam, H., & Nahalkar, A. (2025). Review on Enhancing the Physicomechanical Properties of Chitosan and Konjac Glucomannan Edible Films with Pickering Emulsions Containing Essential Oils for Sustainable Food Packaging. Biomechanism and Bioenergy Research, 4(2), 40-54. https://doi.org/10.22103/bbr.2025.24993.1118
Mondal, H. T., & Akhtaruzzaman, M. (2024). Food Irradiation for Food Safety. In Food Safety (pp. 183-196). CRC Press.
More, C. V., Alsayed, Z., Badawi, M. S., Thabet, A. A., & Pawar, P. P. (2021). Polymeric composite materials for radiation shielding: a review. Environmental chemistry letters, 19, 2057-2090. https://doi.org/10.1007/s10311-021-01189-9
Mostafavi, H. A., Mirmajlessi, S. M., & Fathollahi, H. (2012). The potential of food irradiation: benefits and limitations. Trends in vital food and control engineering, 5, 43-68.  
Nikbakht, H., Rajaei, A., & Movahednejad, M. H. (2024). Investigation and Production of Thyme Essential Oil Nanoemulsion Using Chitosan-Zein Pickering Emulsion Method by Nano Spray Drying Mechanism. Biomechanism and Bioenergy Research, 3(1), 56-67. https://doi.org/10.22103/bbr.2024.22873.1077
Otoni, C. G., Avena‐Bustillos, R. J., Chiou, B. S., Bilbao‐Sainz, C., Bechtel, P. J., & McHugh, T. H. (2012). Ultraviolet‐B radiation induced cross‐linking improves physical properties of cold‐and warm‐water fish gelatin gels and films. Journal of Food Science, 77(9), E215-E223. https://doi.org/10.1111/j.1750-3841.2012.02839.x
Pan, M., Yang, J., Liu, K., Xie, X., Hong, L., Wang, S., & Wang, S. (2021). Irradiation technology: An effective and promising strategy for eliminating food allergens. Food Research International, 148, 110578. https://doi.org/10.1016/j.foodres.2021.110578
Pandey, S., Kumar, G., Tiwari, N. K., & Yadav, J. (2024). Gamma Irradiation Effects on Salvia hispanica L. seeds in M2 Generation: A comprehensive study of genetic variation and phytochemical responses. Caryologia, 77(4), 3-12.
Pinto de Rezende, L., Barbosa, J., & Teixeira, P. (2022). Analysis of alternative shelf life-extending protocols and their effect on the preservation of seafood products. Foods, 11(8), 1100. https://doi.org/10.3390/foods11081100
Quevedo, R., Bastías, J. M., Espinoza, T., Ronceros, B., Balic, I., & Muñoz, O. (2020). Inactivation of Coronaviruses in food industry: The use of inorganic and organic disinfectants, ozone, and UV radiation. Scientia Agropecuaria, 11(2), 257-266. https://doi.org/10.17268/sci.agropecu.2020.02.14
Ramamurthy, V. V., Akhtar, M. S., Patankar, N. V., Menon, P., Kumar, R., Singh, S. K., Ayri, S., Parveen, S., & Mittal, V. (2010). Efficiency of different light sources in light traps in monitoring insect diversity. Munis Entomology & Zoology, 5(1), 109-114.
Reinmuth-Selzle, K., Tchipilov, T., Backes, A. T., Tscheuschner, G., Tang, K., Ziegler, K., Lucas, K., Pöschl, U., Fröhlich-Nowoisky, J., & Weller, M. G. (2022). Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry. Analytical and Bioanalytical Chemistry, 414(15), 4457-4470. https://doi.org/10.1007/s00216-022-03910-1
Rezaee, M., Askari, G., EmamDjomeh, Z., & Salami, M. (2020). UV-irradiated gelatin-chitosan bio-based composite film, physiochemical features and release properties for packaging applications. International journal of biological macromolecules, 147, 990-996. https://doi.org/10.1016/j.ijbiomac.2019.10.066
Romani, V. P., Martins, P. C., da Rocha, M., Bulhosa, M. C. S., Kessler, F., & Martins, V. G. (2024). UV Radiation and Protein Hydrolysates in Bio-Based Films: Impacts on Properties and Italian Salami Preservation. Antioxidants, 13(5), 517. https://doi.org/10.3390/antiox13050517
 
Sabaghi, M., Maghsoudlou, Y., Kashiri, M., & Shakeri, A. (2020). Evaluation of release mechanism of catechin from chitosan-polyvinyl alcohol film by exposure to gamma irradiation. Carbohydrate polymers, 230, 115589. https://doi.org/10.1016/j.carbpol.2019.115589
Salari, M., Khiabani, M. S., Mokarram, R. R., Ghanbarzadeh, B., & Kafil, H. S. (2021). Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film. Carbohydrate polymers, 253, 117144. https://doi.org/10.1016/j.carbpol.2020.117144
Sarmast, E., Shankar, S., Salmieri, S., Rahmouni, S. A., Mahmud, J., & Lacroix, M. (2024). Cross-linked gelatin–riboflavin-based film incorporated with essential oils and silver nanoparticle by gamma-irradiation: A novel approach for extending the shelf life of meat. Food Hydrocolloids, 147, 109330. https://doi.org/10.1016/j.foodhyd.2023.109330
Senna, M. M., Mostafa, A. E.-K. B., Mahdy, S. R., & El-Naggar, A. W. M. (2016). Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 386, 22-29.
Shahbazi, M., Rajabzadeh, G., & Ahmadi, S. J. (2017). Characterization of nanocomposite film based on chitosan intercalated in clay platelets by electron beam irradiation. Carbohydrate polymers, 157, 226-235. https://doi.org/10.1016/j.carbpol.2016.09.018
Shahi, S., Khorvash, R., Goli, M., Ranjbaran, S. M., Najarian, A., & Mohammadi Nafchi, A. (2021). Review of proposed different irradiation methods to inactivate food‐processing viruses and microorganisms. Food science & nutrition, 9(10), 5883-5896. https://doi.org/10.1002/fsn3.2539
Shankar, S., Khodaei, D., & Lacroix, M. (2021). Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries. Food Hydrocolloids, 117, 106750. https://doi.org/10.1016/j.foodhyd.2021.106750
Shojaei, M. H., Jafarinaeimi, K., Mortezapour, H., Maharlooei, M., & Asadi, M. (2025). Effect of Non-Thermal Methods on the Reduction of Pesticide Residues and Harmful Microorganisms in Food Products (A Review). Biomechanism and Bioenergy Research, 4(1), 1-18. https://doi.org/10.22103/bbr.2024.24212.1094
Srinivasa, U. M., Sruthi, P., Rastogi, N. K., & Naidu, M. M. (2023). Application of irradiation in the food industry. In Non-thermal Food Processing Operations (pp. 221-253). Elsevier.
Thavorn, J., Muangsin, V., Gowanit, C., & Muangsin, N. (2022). Research on Shelf Life Extension Technologies for Food Sustainability: An Assessment of Scientific Activities and Networks. The Scientific World Journal, 2022(1), 7120662
Uehara, V., & Mastro, N. d. (2017). Characteristics of biodegradable films based on cassava starch and soy isolate protein treated by electron beam radiation. Academia Journal of Agricultural Research, 5, 68-74.
Villarruel, S., Giannuzzi, L., Rivero, S., & Pinotti, A. (2015). Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose. Materials Science and Engineering: C, 56, 545-554. https://doi.org/10.1016/j.msec.2015.07.003
Wang, K., Wang, W., Wu, X., Xiao, J., Liu, Y., & Liu, A. (2017). Effect of photochemical UV/riboflavin‐mediated cross‐links on different properties of fish gelatin films. Journal of Food Process Engineering, 40(5), e12536. https://doi.org/10.1111/jfpe.12536
Yang, J., Pan, M., Han, R., Yang, X., Liu, X., Yuan, S., & Wang, S. (2024). Food irradiation: An emerging processing technology to improve the quality and safety of foods. Food Reviews International, 40(8), 2321-2343.
Zhou, X., Ye, X., He, J., Wang, R., & Jin, Z. (2020). Effects of electron beam irradiation on the properties of waxy maize starch and its films. International journal of biological macromolecules, 151, 239-246. https://doi.org/10.1016/j.ijbiomac.2020.01.287