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ABSTRACT 

Applying machine learning to anaerobic co-digestion offers potential 

benefits for the palm oil industry and climate change mitigation. 

Conventional prediction models are often complex and lack 

generalization, while studies on palm oil mill effluent (POME) and cow 

dung have not fully addressed optimal substrate ratios and operating 

conditions. In this study, response surface methodology (RSM) and a 

decision tree (DT) were applied to model and optimize POME–cow dung 

co-digestion. RSM examined the relationship between mixing ratios, 

temperature, pressure, and pH, while the DT classified biogas volume as 

low, high, or very high. Results indicated that biogas yield significantly 

depended on mixing ratios, with optimal performance at 1:1 and 0.5:1 

ratios, corresponding to temperatures of 19°C and 39°C. The correlation 

coefficient for prediction reached 31%, and sensitivity analysis revealed 

temperature as the most influential factor, followed by pH and pressure. 

Overall, integrating machine learning into co-digestion modeling can 

reduce operating costs and enhance the sustainability of palm oil agro-

industries. 
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INTRODUCTION 

Climate change poses a challenge to achieving 

sustainable development objectives by 2030 

(Hsieh & Yeh, 2024; Swart et al., 2003). The 

effects of climate change are evident worldwide, 

resulting in rising temperatures, drier conditions, 

agricultural losses, melting glaciers, and new 

disease outbreaks (Abbass et al., 2022). These 

consequences contribute to an increase in living 

standards and a rise in poverty levels. The causes 

of climate change are diverse. Industrial activities 

that use fossil energy sources contribute about 

30% of greenhouse gas emissions. The 

agricultural sector contributes an additional 14% 

(Abbass et al., 2022). 

Africa is significantly impacted by climate 

change, and agriculture is a key driver of the 

continent's development. Moyo et al. found that 

agriculture contributes 18% to greenhouse gas 

emissions, primarily due to the poor management 

of agricultural byproducts, including palm nut 

effluents (Moyo et al., 2023). These effluents are 

rich in methane and are often released into the 

environment or water sources. This leads to 

global warming and harm to aquatic life (Awoh 

et al., 2023). An estimated 3.4 tons of effluent per 

year are discharged into the environment (Lim et 

al., 2021). 

Studies have shown that palm kernel effluents 

can serve as valuable sources of energy for 

anaerobic digestion, rapid pyrolysis, and 

combustion units (Lim et al., 2021; Promraksa & 

Rakmak, 2020; Razuan et al., 2010). Anaerobic 

fermentation units are particularly suitable for 

wet substrates, such as palm kernel effluents. 

Previous studies have shown that one liter of 

palm kernel effluent can produce 14 to 25 m³ of 

biogas under thermophilic anaerobic digestion 

conditions (Krishnan et al., 2017).The co-

digestion of palm kernel and cow dung effluents 

at different ratios has also been studied (Fajar et 

al., 2018; Lim et al., 2021; Nasir et al., 2012; 

Vahedi et al., 2022). 

Anaerobic co-digestion has proven 

advantageous for mitigating climate change and 

environmental pollution. In fact, it plays a 

significant role in reducing the environmental 

impact of toxic substances and process inhibitors 

by lowering the concentrations of ammonia, 

sodium ions (Na+), calcium ions (Ca2+), 

magnesium ions (Mg2+), sulfides, inorganic 

salts, and heavy metals (López-Aguilar et al., 

2023). Co-digesting POME with cow dung could 

overcome the limitations of using POME alone 

and provide an effective solution for reducing 

environmental pollution in the local palm oil 

industry. 

Various mathematical models have been 

developed to predict the volume of biogas 

produced from the anaerobic fermentation of 

palm kernel effluents, taking into account 

hydraulic retention time and temperature (Li et 

al., 2018; Roy et al., 2018). However, a lack of 

universal models exists due to the variability of 

the conditions under which they are established. 

Emerging new modeling techniques, such as 

artificial intelligence–based methods like 

response surface methodology, decision trees, 

and artificial neural networks, are improving 

prediction accuracy (Kutyauripo et al., 2023; 

Parrenin et al., 2023). 

Despite the potential benefits of anaerobic co-

digestion, the complexity of nonlinear parameters 

and conversion processes often necessitates time-

consuming, theoretical mathematical models. 

Machine learning approaches have increasingly 

been used for prediction and optimization studies 

in anaerobic co-digestion processes (Awhangbo 

et al., 2020a, 2020b; Kana et al., 2012). These 

approaches have shown promise in the efficient 

monitoring and control of such processes. Tools 

such as principal component analysis and particle 

swarm optimization have been applied to 

optimization studies (Kainthola et al., 2020; 

Krishnan et al., 2017). However, the composition 

of POME and cow dung varies from one 

environment to another, resulting in a lack of 

uniformity in POME and cow dung co-digestion 

procedures. Researchers still face challenges 

conducting POME and cow dung codigestion to 

obtain optimal co-digestion procedure ratios due 

to substrate chemical composition and 
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transportation cost-effectiveness (Nasir et al., 

2012; Ohale et al., 2023; Pererva et al., 2020). 

Studies have used tools such as response 

surface methodology and decision trees to 

optimize biogas yield from anaerobic codigestion 

processes in the context of substrate mixing ratios 

(De Clercq et al., 2019). However, more research 

is needed using machine learning techniques to 

predict and optimize these processes, particularly 

in industries such as palm oil production. These 

studies could provide valuable insights into 

improving the efficiency of anaerobic 

codigestion and identifying key parameters for 

optimal performance and monitoring control of 

biogas plants. The present study uses response 

surface methodology and decision tree tools to 

predict biogas volume based on the ratio of palm 

oil effluent to cow dung, temperature, and 

pressure. 

MATERIALS AND METHODS 

Collection of Palm Oil and Cow Dung 

Effluents 

Palm oil effluents were collected from an oil 

production facility in southwestern Cameroon. 

About 200 liters of the effluent were collected 

and stored at 28°C to prevent solidification. Cow 

dung was collected from a pulping farm at the 

University of Buea. Table 1 outlines the 

characteristics of the palm oil effluents and cow 

dung. 

Table 1. Co-substrates characteristics 

Parameters POME Cowdung 

COD (mg/l) 51000 125 

BOD (mg/l) 29500 - 

VS (%) 30 82.8 

TS (% or mg/l) 40500 15.6 

Ph 5.5 7.8 

Water content (%) 91 68 

 Determination of Palm Oil Effluent to Cow 

Dung Ratios 

To investigate the impact of ratios on biogas 

volume, four ratios based on the volume of each 

substrate were established. The ratios were palm 

oil effluent to cow dung at 1:1, 0:1, 0.5:1, and 

1:0.5. These ratios were selected based on 

research by Lim et al. (Lim et al., 2021). The 

volumes of each ratio are presented in Table 2 

below. Mixing and measurements were 

conducted in a 20-liter container before 

transferring to the anaerobic fermentation reactor. 
 

Table 2. Feedstocks quantity determination 

Set POME-cowdung ratio Feeds Total working 

volume (liter) POME cowdung POME 

(liter) 

cowdung 

(liter) 

water (liter) 

1 (control) 0 1 0.0 14.5 3 15 

2 0.5 1 4.5 9.5 3.5 15 

3 1 1 6.5 6.5 2 15 

4 1 0.5 9.5 4.5 2 15 

 

Anaerobic fermentation process and 

parameter determination 

Co-digestion was conducted in a 15-liter 

anaerobic fermentation reactor. The fermentation 

process followed the methodology established by 

Lim et al. (Lim et al., 2021). Parameters such as 

fermentation temperature, biogas pressure, pH, 

and biogas volume were monitored. Daily pH 

measurements were taken using a calibrated pH 

meter (HI202-01 Edge from Hanna Instruments). 

Temperature readings were collected daily from 

three K-type thermocouple sensors placed at 

different points in the tank. Gas pressure was 

recorded daily using a pressure sensor attached to 

the gas pipe. Biogas volume was determined 

using the water displacement method at seven-

hour intervals to enhance data variability (Anitha 

et al., 2015). 

Prediction and Optimization of Biogas 

Volume Using the RSM, the Decision Tree, the 

Regression Model 

Response surface methodology 
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The response surface methodology used box-

behnken designs (Beltramo et al., 2016), 

involving about 15 trials. The independent 

variables were the temperature of anaerobic 

fermentation, pH, and biogas pressure, while 

biogas volume served as the response variable. 

The design identified the key factors that 

influenced the response, and a code was 

simulated in MATLAB 2015a to establish 

quadratic linear models for each ratio set. Table 3 

presents the 3-factor Box-Behnken design for 

biogas volume values, with coefficients of -1, 0, 

and +1 corresponding to temperature, pH, and 

biogas pressure. 

Table 3. 3 factors design applied to the biogas volume 
corresponding to the fourth ratios 

Factors 

Number of 

experiments 

Temperature Ph Pressure 

9 -1 -1 0 

2 -1   

1 1 -1 0 

6 1 1 0 

11 -1 0 -1 

15 -1 0 1 

13 1 0 -1 

10 1 0 1 

8 0 -1 -1 

14 0 -1 1 
3 0 1 1 

7 0 0 0 

4 0 0 0 

5 0 0 0 

    

A series of experiments was conducted using 

the experimental design to determine the optimal 

temperature, pH, and biogas pressure for each 

ratio set. The ratio sets were considered the 

dependent variable. 

Optimization process 

The optimization process involved testing the 

temperature, pH level, and biogas pressure to 

determine their nonlinear relationship with 

biogas volume. A quadratic polynomial function 

was used for the multiple regression model, and 

the coefficients were determined using a 

minimization/maximization function in 

MATLAB. The fundamental equation for 

minimization/maximization is shown in Equation 

2. 

Quadratic model =  β1 ∗ T + β2 ∗ pH + β3 ∗ P
+ β4 ∗ T ∗ pH + β5 ∗ T ∗ P
+ β6 ∗ pH ∗ P + β7 ∗ T2

+ β8 ∗ pH2 + β9 ∗ P2 

(1) 

With T: Temperature (°C),P:Pressure (bar),pH. 

Specifically, the coefficients β₁, β₂, β₃, ..., β₉ of 

the quadratic equation were determined using a 

minimization/maximization function in 

MATLAB. A code was written for this purpose. 

The fundamental equation of 

minimization/maximization is expressed as 

follows: 

𝐸 =  ∑(a𝑥𝑖 + b + 𝑦𝑖)2

𝑘

𝑖=1

 (2) 

E, Quadratic model, will be maximized with 

respect to b at constant a, and with respect to a at 

constant b. x and y are considered constants 

during the differentiation process with respect to 

either a or b 

𝑑𝐸

𝑑𝑎
= 2 Σ(a𝑥𝑖 + b + 𝑦𝑖)𝑥𝑖 = 0 (3) 

 𝑑𝐸

𝑑𝑏
= 2 Σ(a𝑥𝑖 + b + 𝑦𝑖)𝑦𝑖 = 0 

(4) 

a,b represent the coefficients as β1,β2,β3,β9 

and x_i,y_i  represent parameters like the 

temperature,pH and pressure. 

Linear regression  

Linear regression analysis was used to 

determine the relationships between the 

anaerobic fermentation parameters. The data 

were input into Matlab 2015a software for 

analysis, and the coefficient of determination (R²) 

was used to characterize the relationships. 

Υi = β0 + β1Χi (5) 

With Υi as dependant variable, Xi as 

independent variable and β0,β1,β2 are coefficients 

Decision tree 

The decision tree was designed to identify 

correlations between ratio sets and biogas 

parameters. The data was divided into input and 

output, and the decision tree was used to predict 

the biogas volume based on the temperature, pH 
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level, and biogas pressure of the studied ratios. 

The model was validated using test data, and a 

Python script assessed the model's accuracy on 

the training data. The split percentage was 

determined based on the models' ability to 

accurately predict the output variable without 

overfitting or underfitting the data, as shown in 

Table 4. 

 

 

 

 
Table 4. Decision tree parameters 

Attributes Input Output 

Biogas volume       

temperature   

pH   

Biogas pressure   

RESULTS AND DISCUSSION 

Average biogas volume 

The average biogas volume as a function of the 

POME-cow dung ratios is presented in Table 5 

below. It shows that regardless of the ratio, the 

1:0 ratio obtained the highest volume of biogas 

(p<0.05), followed by the ratio 0.5:1. 

Table 5. Mean values of the biogas volume according to the type of ratio POME-cow dung 

Ratio POME-cow 

dung 

Mean biogas 

volume 

(cm3) 

95 % range value Deviation Deviation Interval 

Ratio 1:1 2318.77*** [2029.91, 2607.63] 699.795 [546.42, 973.521] 

Ratio 1:0.5 2467.89*** [2196.17, 2739.6] 658.252 [513.981, 915.728] 

Ratio 0.5:1 4687.57** [4070.94, 5304.2]            1493.85    [1166.44, 2078.17] 

Ratio 1:0 7650.18*    [7018.2, 8282.17] 1531.04    [1195.48, 2129.91] 

***mean values are non-significantly different 

Conversely, no significant difference was 

observed between the 1:1 and 1:0.5 ratios, which 

had the lowest average biogas volumes. 

Regardless of the substrate mixing ratio, the 

range was low compared to that obtained by Lim 

et al. (Lim et al., 2021). This difference could be 

due to the quantity of substrate mixture used. 

 

Evolution of Biogas Volumes (Cm3) As A 

Function of Hydraulic Retention Period 

(Days) 

Figure 1 below illustrates the evolution of 

biogas volumes as a function of the hydraulic 

retention period. Regardless of the hydraulic 

retention time, the curves have the same 

configuration. Daily methane production 

increased from the first to the 12th day of 

anaerobic digestion.  
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Figure 1. Evolution of biogas volumes as a function of hydraulic retention time 

From day 12th to 25th of anaerobic digestion, the 

volume of biogas decreases. For all substrate 

mixing ratios, the methane-forming bacteria are 

still growing, which reduces the timing of biogas 

production (an increase in the lag phase) due to 

the presence of high percentages of acid-forming 

bacteria from POME. Similar observations were 

made by López-Aguilar et al. though the timing 

differed (López-Aguilar et al., 2023). Case 1:0 

without POME demonstrates this as well. Later, 

we noticed a clear separation between the 0.5:1 

ratio, which increased rapidly until the end, and 

the 1:0.5 and 1:1 ratios. This could be explained 

by temperature and pH fluctuations related to the 

high lag phase. The methane-forming bacteria for 

all three ratios are in the growth phase, which 

reduces biogas production timing due to the 

presence of high percentages of acid-forming 

bacteria from POME. 

Frequency Distribution of Anaerobic 

Codigestion Temperature 

The frequency distribution of anaerobic 

codigestion temperatures is illustrated in figure 2 

below. Regardless of the POME-cow dung ratios, 

the anaerobic fermentation temperatures are 

between 20°C and 39°C. These values reflect 

mesophilic anaerobic digestion. 
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Figure 2. Frequency of distribution of anaerobic fermentation temperatures 

 

This temperature range represents 

experimental values for the implementation of an 

industrial anaerobic fermentation unit without 

additional energy input for heating. In terms of 

frequencies, the most representative temperature 

during our anaerobic digestion tests would be 

between 25°C and 35°C. This range of values is 

similar to that obtained by the following authors. 

 

 

 

Evolution of the Biogas Volume as a 

Function of Anaerobic Digestion Temperature 

and the POME-Cow Dung Ratios 

Figure 4 shows the volume of biogas in relation 

to temperature and the POME-cow dung ratio. It 

shows that the highest volume of biogas was 

produced by anaerobic fermentation at a 

temperature of 34°C and a ratio of 0.5:1. 

Conversely, the lowest volume of biogas was 

observed at a precise temperature of 20.1°C with 

the ratio of 1:1. However, biogas is produced 

more quickly at the 1:1 and 0.5:1 ratios than at the 

0:1 and 1:0.5 ratios, where biogas is produced at 

temperatures of 25°C and 26.5°C, respectively.
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Figure 3. Evolution of the biogas volume as a function of anaerobic fermentation temperature and POME-cow 

dung ratios 

These results show that there is no need to heat 

the bioreactor tank because the temperature of co-

substrates behaves naturally under mesophilic 

conditions, reducing the energy consumption and 

providing a low-cost implementation for such a 

ratio (Choong et al., 2018; Mao et al., 2015). In 

addition, Ohale et al. signify that the minimum 

temperature for bacteria to grow during anaerobic 

fermentation is 15°C (Ohale et al., 2023). 

Evolution of the Biogas Volume as a 

Function of Anaerobic Digestion Ph and 

POME-Cow Dung Ratios 

The volume of biogas as a function of the pH 

of the anaerobic digestion and the POME-cow 

dung ratios is shown in figure 4. It appears that 

the highest volume of biogas was observed at a 

pH close to 7 in the ratio 0.5:1.  
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Figure 4. Evolution of the biogas volume as a function of anaerobic digestion pH and POME-cow dung ratios 

Despite the small volume of biogas produced, 

there is faster and more instantaneous production 

of biogas at a pH close to 3 in a 1:1 ratio. In 

contrast, biogas production was observed at ratios 

of 1:0.5, 0.5:1, and 0:1 at pH values of 4.6, 4.6, 

and 5.83, respectively. All of these values remain 

below the reference value of 6.2. Conversely, 

biogas production is only effective at pH ≥ 7 for 

the 0.5:1 and 0:1 ratios. The mixture of POME 

and cow dung at a ratio of 0.5:1, with a large 

quantity of organic matter, undergoes rapid 

hydrolysis at the beginning of fermentation. This 

produces an accumulation of volatile fatty acids, 

which are responsible for the drop in pH. This 

phenomenon clearly explains the mechanism of 

pH variation in anaerobic digestion (Choong et 

al., 2018; Sukkar et al., 2021). 

Evolution of the volume of biogas as a 

function of its pressure and the POME-cow 

dung ratio 

Figure 5 shows the evolution of biogas volume 

as a function of pressure and the POME-cow 

dung ratio. While the 0.5:1 ratio produces the 

greatest volume of biogas, the gas pressure for 

this ratio ranges from 0 to 1.1 bar. 
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Figure 5. Evolution of the biogas volume as a function of its pressure and the POME-cow dung ratio 

Conversely, for ratios of 1:1, 1:0.5, and 0:1, the 

volume of biogas decreases as gas pressure 

increases. This decrease in biogas volume is more 

noticeable in the 1:1 and 1:0.5 ratios. However, 

the gas pressure range is between 1.1 and 3.7 

bars, which is higher than the 0.5:1 ratio, which 

had the highest biogas volume. We observe 

pressure value stability for the three ratios, with 

the lowest pressure value obtained at the 0.5:1 

ratio. According to Tshemese et al. low, stable 

pressures promote good biogas production and 

high methane content (Tshemese et al., 2023). 

Cumulative Volume of Biogas as a Function 

of POME-Cow Dung Ratios 

The cumulative volume of biogas as a function 

of the POME-cow dung ratios is shown in figure 

6. It appears that apart from the reference ratio 

(1:0), the cumulative volume of biogas was 

highest in the 0.5:1 ratio, followed by the 1:0.5 

ratio and finally the 1:1 ratio. 
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Figure 6. Cumulative volume of biogas as a function of POME-cow dung ratios 

This cumulative volume of biogas is correlated 

with the daily biogas volume. Taking into 

account the parameters studied above such as 

temperature, pH, and pressure during anaerobic 

fermentation, we can see that the volume of 

biogas was highest with the ratio 0.5:1. By 

decreasing the quantity of POME in the mixture, 

we suspect a decrease in the volatile fatty acids 

with an increase in methanogenic bacteria 

growth, which could have enhanced the 

cumulative biogas volume. Moreover, the 

cumulative biogas volumes are related to 

temperatures and pH corresponding to each 

POME-cow dung ratio. 

Biogas Optimization Process Using 

Response Surface Methodology 

The optimization process of biogas volume was 

established based on the biogas temperature, pH, 

and pressure values corresponding to each set of 

POME-cow dung ratios (1:1, 1:0.5, 0.5:1, and 

1:0). The coefficients of the polynomial equation 

(6) related to the Box-Behnken design (BBD) are 

presented in Table 6. 

Quadratic model =  β1 ∗ T + β2 ∗ pH + β3 ∗ P
+ β4 ∗ T ∗ pH + β5 ∗ T ∗ P
+ β6 ∗ pH ∗ P + β7 ∗ T2

+ β8 ∗ pH2 + β9 ∗ P2 

(6) 

With  T, Temperature (°C), PPressure (bar) 

and pH. 

It shows that kernels are the best predictor of 

the iodine index, followed by crushed and whole 

seeds, with correlation coefficients of 0.74, 0.62, 

and 0.48 respectively..

Table 6. Coefficient of the quadratic model for different ratios 

Ratio 

POME-

cow dung 

𝛃𝟏 𝛃𝟐 𝛃𝟑 𝛃𝟒 𝛃𝟓 𝛃𝟔 𝛃𝟕 𝛃𝟖 𝛃𝟗 𝐑𝟐 𝐑𝐌𝐒𝐄 

Ratio 1:1 390.92 -135.16 -96.01 28.27 -241.69 51.98 255.98 -470.88 977.67 0.63 476 

Ratio1:0.5 243.46 92.39 14.354 15.835 -254.44 
-

2.502 
-721.3 -704.26 635.98 0.88 255 

Ratio0.5:1 741.7 64.59 -6.47 125.17 -0.372 
-

311.4 
4.52 -763.14 2569.6 0.83 719 

Ratio 1:0 663.66 10.091 23.543 110.83 -445.36 4.525 -37.73 -780.64 2480.1 0.71 979 

57969.18

87768.47
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Biogas  volume for Ratio 1: 1 =  390.92∗ T −
135.16 ∗ pH − 96.01 ∗ P + 28.27 ∗ T ∗ pH −
241.69 ∗ T ∗ P + 51.98 ∗ pH ∗ P + 255.98 ∗
T2 − 470.88 ∗ pH2 + 977.67 ∗ P2 

(7) 

Biogas  volume for Ratio 1: 0.5 =  243.46∗ T +
92.39 ∗ pH + 14.354 ∗ P + 15.835 ∗ T ∗ pH −
254.44 ∗ T ∗ P − 2.502 ∗ pH ∗ P − 721.3 ∗
T2 −704.26∗ pH2 + 635.98 ∗ P2 

(8) 

Biogas  volume for Ratio 0.5: 1
=   741.7 ∗ T + 64.59 ∗ pH
− 6.47 ∗ P + 125.17 ∗ T
∗ pH − 0.372 ∗ T ∗ P
− 311.4 ∗ pH ∗ P
+ 4.52 ∗ T2 − 763.14 ∗ pH2

+ 2569.6 ∗ P2 

(9) 

Biogas  volume for Ratio 1: 0
=   663.66 ∗ T + 10.091
∗ pH + 23.543 ∗ P + 110.83
∗ T ∗ pH − 445.36 ∗ T ∗ P
+ 4.525 ∗ pH ∗ P
− 37.73 ∗ T2 − 780.64
∗ pH2 + 2480.1 ∗ P2 

(10) 

Determination of optimum solutions for 

quadratic models 

Table 7 shows the optimum values of 

temperature, pH, and pressure corresponding to 

each ratio POME-cow dung. As far as the biogas 

temperature is concerned, the ratio 1:0.5 is found 

to have the highest temperature. As for the pH, 

the ratio 0.5:1 showed the highest pH (7.4). 

Finally, the ratio 1:0.5 produces the highest 

optimum value of gas pressure (3.16 bars). 

Table 7. Optimal values of biogas temperature, pH, and pressure for ratio POME-cow dung 

Optimum values of parameter corresponding to  Peroxide value 
Corresponding 

equations number 

Ratio POME-cow 

dung 

Temperature 

(°C) 
pH Pressure (Bars)  

Ratio 1:1 19 6.8 2.21 8 

Ratio1:0.5 39.5 6.1 3.16 9 

Ratio0.5:1 38 7.4 2.23 10 

Ratio 1:0 38 7 0.85 11 

Linear regression model 

A linear regression model was established for 

each POME-cow dung ratio in anaerobic 

digestion, and the parameters are presented in 

Table 8. The 1:0.5 and 0.5:1 POME-cow dung 

ratios fit better with the linear regression model, 

as indicated by R and the P-value. 

Table 8. Linear regression parameters corresponding to each set of ratio 

Set of ratio R2 RSME P-value 

Ratio 1:1 0.63 476 0.00106 

Ratio1:0.5 0.88 268 3.7*10-8 

Ratio0.5:1 0.83 719 1.45*10-5 

Ratio 1:0 0.71 979 0.00128 

Decision tree results 

Figure 7 in addition with table 9 show the 

prediction model for anaerobic fermentation of 

POME and cow dung. The biogas volume is 

characterized by three performance categories: 

very high, high, and low. The model achieved 

85% prediction accuracy on the test data. 
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Table 9. Accuracy data for the decision tree model 

 Precision Recall F1-score Support 

High 0.82 0.90 0.86 10 

Low 1.00 0.60 0.75 5 

Very High 0.83 1.00 0.91 5 

Accuracy   0.85 20 

Macro avg 0.88 0.83 0.84 20 

Weighted avg 0.87 0.85 0.84 20 

 

 

Figure 7. Prediction performance of POME-cow dung codigestion using scikit-learn 

This high level of precision reflects the 

robustness of the model. As the above figure 

shows, the model effectively classifies anaerobic 

fermentation based mainly on high and low 

biogas volume values. Within the training 

dataset, the model accurately identified 9, 3, and 

5 biogas volumes as having very high, high, and 

low performance, respectively. On the same 

graph, only two biogas volumes were 

misclassified by the model. Furthermore, figure 8 

shows a decision tree with three quantitative 

parameters that can be used to predict the 

performance of POME-cow dung anaerobic 

codigestion. 
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Figure 8. Decision tree for the POME-cow dung anaerobic codigestion 

From figure 8, four levels with fifteen leaves 

are presented. The first parameter is the biogas 

temperature (X[0]), followed by the pH (X[1]) 

and finally the biogas pressure (X[2]). The range 

of values for each predictive parameter is also 

displayed in Table 10 below, corresponding to 

high or low POME-cow dung anaerobic 

fermentation performance. 

Table 10. Predicted parameters of POME-cow dung anaerobic fermentation performance 

Parameters            Range of values Performance  

Temperature (X[0])                 <= 30.75 Low 

                 > 30.75 High 

pH (X[1])                   >5.35 High 

                <=5.35 Low 
Pressure (X[2])                  <= 0.94 Low 

                  >  1.87 High 

Indeed, anaerobic digestion operating at 

temperatures above 30.75°C is expected to 

produce high-performance biogas. Conversely, a 

biogas reactor with a pH below 5 is expected to 

produce less biogas and perform poorly. Finally, 

the biogas volume can be predicted based on the 

biogas pressure. In this study, a biogas pressure 

of less than 0.94 bars is expected to result in low 

performance, whereas a pressure greater than 

1.87 bars could result in high performance at the 

end of the process. Figure 9 illustrates the 

correlation between the actual and predicted 

biogas volumes. 
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Figure 9. POME-cow dung biogas volume prediction 

It appears from the above figure that the 

calculated biogas volume fits well with the 

experimental biogas volume. This is shown by 

the value of the coefficient of correlation R2 = 

31%. 

CONCLUSIONS 

The main objective of this study was to predict 

the substrate mixing ratio during anaerobic 

codigestion of POME and cow dung using 

response surface methodology and decision tree. 

The POME-cow dung ratio affects the biogas 

volume. The ratio of 0.5:1 produced the highest 

biogas volume, temperature, and pH, followed by 

the ratio of 1:0.5. These results present an 

advantage in terms of reduced transportation 

costs if a biogas power plant is implemented 

using POME and cow dung as substrates. 

Response surface methodology and decision trees 

provided accurate predictions of the POME-cow 

dung mixing ratio. Optimal values of 

temperature, pH, and pressure were determined 

for each POME-cow dung ratio studied. 

Additionally, quadratic equations were 

established to predict biogas volume based on 

temperature, pH, and pressure. The decision tree 

revealed that temperature had the most significant 

effect on biogas volume, followed by pH and then 

biogas pressure, regardless of the POME-to-cow 

dung ratio. A correlation coefficient of 32% was 

determined for the correlation between the 

predicted and experimental biogas volumes. 

Based on these findings, large-scale co-digestion 

of POME and cow dung could be implemented in 

Cameroon using the model established in this 

study. Future research will focus on reducing the 

lag phase of anaerobic codigestion of POME and 

cow dung over an extended fermentation period. 
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