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ABSTRACT 

Rice is one of the most important cereal crops. This plant is native to 

tropical and subtropical regions and has the largest cultivated area in the 

world after wheat. Rice is exposed to various types of biotic and abiotic 

stresses at different stages of cultivation. Among the different pathogens, 

fungi have the largest pathogenicity spectrum. Hyperspectral imaging is 

used specifically in assessing the safety and quality of food. The present 

study demonstrates the possibility of using hyperspectral imaging to 

differentiate Alternaria species. The samples used in the study included 

A. solani, A. dumosa, and A. atra. Hyperspectral images of the samples 

were obtained using a scanning imaging system. The effective 

wavelengths were selected using principal component analysis (PCA). 

According to the principal component analysis, the increase in time was 

associated with enhanced enzymatic activity, which led to a lighter color 

of the solution. Moreover, a significant difference in enzyme activity 

levels was observed across the different days. Also, fungal growth 

increased with increasing enzyme activity duration. Also, in the 

comparison between different fungal isolates, significant differences 

were observed between different isolates. 
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INTRODUCTION 

Rice (Oryza sativa L.) is one of the most 

strategically important agricultural crops 

worldwide. It is ranked as the second most 

consumed staple food after wheat. Despite its 

widespread cultivation, rice production in rainfed 

areas faces significant constraints due to drought 

stress, leading to yield instability (Gallé & 

Katzenberger, 2025) and fluctuations in market 

supply and demand (Nahar et al., 2018). After 

wheat, it has the highest cultivation area in the 

world. It constitutes the food of more than half of 

the world's population, especially developing 

countries (Bandumula, 2018; Kunjaroenruk et al., 

2025). 

Rice is exposed to various types of biotic and 

abiotic stresses at different stages of cultivation; 

among the various pathogens, fungi have the 

largest spectrum of pathogenicity, with rice being 

attacked by 56 fungal pathogens (Butt et al., 

2011). The most important fungal pathogens of 

rice include Pyricularia oryzae, Bipolaris orzyae, 

Gibberella moniliformis, Rhizoctonia solani, 

Alternaria alternata, Curvularia lunata, and 

Sarocladium oryzae. Curvularia species are 

destructive pathogens of grasses and rice. Leaf 

spot symptoms, characterized by annular necrosis 

on rice leaves, are of the most common symptoms 

caused by these fungi in rice fields, which 

significantly reduce rice yield and productivity 

(Kusai et al., 2016). Early detection of diseases 

and differentiation of spots and lesions can lead 

to the adoption of specific strategies to manage 

these pathogens, which can prevent a decrease in 

the quality and quantity of rice yield (Terensan et 

al., 2021).  

Imaging is a non-destructive and a fast, cheap, 

accurate, and simple (no need to skilled persons) 

technique that is widely used in various fields 

(Farokhzad et al., 2024; Hosainpour et al., 2022; 

Khazaee et al., 2022; Kheiralipour et al., 2013; 

Kheiralipour & Nargesi, 2024; Nargesi et al., 

2024; Nargesi et al., 2025; Nargesi & 

Kheiralipour, 2024a, 2024b). Hyperspectral 

imaging (HSI) or chemical imaging is one of the 

new techniques in this field that combines the 

advantages of spectroscopy as an analytical tool 

with the two-dimensional object visualization 

provided by optical imaging (Kheiralipour & 

Jayas, 2023). In this technique, spectral 

information of each pixel is recorded. This 

information is added as a third dimension 

containing reflectance values to the two-

dimensional spatial image to create a three-

dimensional data cube, which is referred to as the 

image cube or hypercube. Hyperspectral 

imaging, which captures electromagnetic waves 

in the visible (Vis) and near-infrared (NIR) 

wavelength ranges, is a new imaging technique. 

It has been used to evaluate various materials 

(Kheiralipour & Jayas, 2023; Kumar et al., 2016; 

Liu et al., 2020; Vejarano et al., 2017). The ability 

to detect targets in the invisible spectrum, which 

cannot be observed using visible imaging, is a key 

factor that distinguishes hyperspectral imaging 

from visible imaging (Kheiralipour & Jayas, 

2023; Kheiralipour & Nargesi, 2024). 

HSI technique has a wide range of applications 

in agriculture and the food industry (Kheiralipour 

& Jayas, 2023). Fungal contamination in various 

agricultural products has been detected using 

hyperspectral imaging technology (Kheiralipour 

et al., 2015; Kheiralipour et al., 2021). The 

objective of this study is to differentiate fungal 

species associated with rice contamination using 

hyperspectral imaging technique as an innovative 

approach that has not yet been applied in this 

field. Also, fungus growing days has been 

differentiated using HSI in the present research. 

MATERIALS AND METHODS 

Sample Preparation 

The first step in the present study was to 

prepare experimental samples. The samples were 

collected from different fields in Ilam province, 

Iran. The fungal species utilized in this study 

included A. solani, A. dumosa, and A. atra 

(Figure. 1a). 
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Production and Induction of Chitinase 

Enzyme 

Substrate preparation 

Colloidal chitin as a substrate to prepare a 

culture medium for inducing the chitinase 

enzyme was prepared following the procedure of 

Tikhonov et al. (Tikhonov et al., 2002). To 

prepare colloidal chitin, 100 ml of 85% 

phosphoric acid was added to ten grams of chitin 

powder and the resulting mixture was kept at 4°C 

for 24 hours. Water was added to the mixture and 

filtered with filter paper. To completely remove 

the acid, the steps of adding water and filtering 

were repeated several times. The resulting paste 

was dried and powdered and used as a carbon 

source in the water agar medium. 

 

Preparation of induction culture medium 

To prepare the basic culture medium for the 

production of chitinase enzyme, five-mm-

diameter discs were cultured from five-day-old 

isolates in MSM liquid culture medium 

containing (NH4)2SO4: 2.8 g, Urea: 0.6 g, 

KH2PO4: 4 g, Cacl2.2H2O: 0.6 g, MgSO4: 0.2 

g, FeSO4.7H2O: 0.01 g, ZnSO4.H2O: 0.0028 g, 

Cocl2.6H2O: 0.0032 g, and one gram per liter of 

colloidal chitin. In this way, 100 ml of the culture 

medium was poured into 250 ml Erlenmeyer 

flasks and placed on a shaker for five days at a 

speed of 120 rpm and a temperature of 25 °C 

(Abbasi et al., 2017). 

Investigation of chitinase enzyme activity 

To prepare the chitin base solution, 0.5% 

colloidal chitin was dissolved in 100 ml of 

distilled water. Chitinase activity was determined 

by measuring the release of reducing saccharides 

from colloidal chitin by the N-acetyl-

glucosamine-dinitrosalicylate method according 

to the method described by Monreal and Reese 

(Monreal & Reese, 1969). A reaction mixture 

containing 200 μl 0.5% chitin provided in citrate 

phosphate buffer (0.05 M, pH = 6.6) and 200 μl 

enzyme solution was incubated at 37°C for 1 h. 

Then 1 ml of dinitrosalicylic acid reagent (DNS) 

was added to reaction. The reaction was heated in 

boiling water for 5 min and was centrifuged at 

6,000 rpm for 5 min and absorbance at 540 nm 

for four times; 24 h, 48 h, 72 h and 96 h were 

measured. The spectrophotometer was zeroed for 

the samples by the reaction mixture whose extract 

activity had been stopped in a 100°C water bath. 

Evaluation of the ability to produce chitinase 

enzyme in chitin-agar culture medium 

The ability of the fungal isolates to produce 

chitinase enzyme was investigated in WA 

medium containing 0.5% colloidal chitin, where 

chitin is used as the sole carbon source by the 

fungus. A 5 mm disc from the edge of a 4-day-

old fungal culture was placed in the center of the 

dish and the dishes were kept at 25°C for 5 days. 

After 5 days, the ability of the isolates to produce 

chitinase enzyme was evaluated by measuring the 

diameter of the fungal mycelium.  

Hyperspectral Imaging 

The imaging step was conducted in Image 

Processing Laboratory, Ilam University, Ilam, 

Iran. In the present research, a line scan visible 

near-infrared (vis-NIR) hyperspectral imaging 

system (Model Specam, Parto Sanat Co., Zanjan, 

Iran) with a wavelength range of 400 to 950 nm 

was used (Fig. 1). The hyperspectral images 

(hypercubes) of the samples were saved in a 

personal computer to be processed in the next 

step. 
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Figure 1. The studied fungal isolates (left) and the used hyperspectral imaging system (right). 
 

Image Processing  

MATLAB software was used for processing 

the acquired images (hypercubes). In 

preprocessing, the center of the hypercubes was 

cropped to be used in the next step. Then the 

effective wavelengths were selected using the 

principal component analysis (PCA) method. To 

this end, the average principal component (PC) of 

all wavelengths were calculated and were plotted. 

The effective wavelengths were fund as the peak 

of the diagrams (Nargesi et al., 2025). In the final 

step, the mean (as an image feature) value of the 

hypercubes corresponding to the effective 

wavelengths were extracted to show the 

differences between fungi spices and growing 

stage. 

RESULTS AND DISCUSSION 

The Ability of Producing Chitinase Enzyme 

in Chitin Agar Medium 

Three selected fungal isolates were cultured in 

chitin agar medium to investigate the production 

of chitinase enzyme. The chitinase enzyme 

activity was measured as the diameter of the 

fungal mycelium in petri dish (Fig. 2). All the 

isolates studied were able to produce chitinase 

enzyme and break down and utilize chitin. The 

results of chitinase enzyme production for three 

different species of Alternaria were that the 

diameter of the fungal mycelium in the A. solani 

was greater than that of the A. dumosa isolate and 

also greater than that of the A. atra isolate. The 

highest and lowest diameters of the fungal 

mycelium were related to the A. solani and the A. 

atra isolate, respectively. The results showed that 

the larger diameter of the fungal isolates indicates 

high chitinase activity. 

 

Imaging Results 

Fungal spices  

The mean values of the principal components 

PCA of the hyperspectral images of the samples 

were plotted for all wavelengths. The PCA data 

of all samples were presented in diagrams and 

according to the peaks of the curves, the effective 

wavelengths were selected. The peaks in the 

graphs were selected as effective channels and the 

wavelengths corresponding to these effective 

channels were found based on the output of the 

imaging system. In the next subsections the 

results corresponding to differentiating different 

fungi and also different days were presented. 

The average of PCA data of A. solani, A. 

dumosa and A. atra spices were plotted (Fig. 2). 

Based on the peaks in the diagrams, the effective 

image channels were selected as 40, 99, 177, 275, 

351, 430, 550, and 660. Also, the effective 

wavelengths corresponding to the selected image 

channels were 432.65, 481.43, 545.93, 626.96, 

689.80, 755.12, 854.34, and 945.29 nm. 
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Figure 2. The average PCA diagrams of the studied Alternaria species. 

The mean of the feature extracted from the 

hypercubes corresponding to the effective 

wavelengths for different fungi spices were 

presented in Table 1. As seen in this table, the 

mean values of the spices were different from 

each other. The highest values were obtained for 

A. solani and the lowest values were observed for 

A. atra. 

As can be seen in Table 1, the values of the 

effective wavelength for different species of A. 

solani, A. dumosa, and A. atra were different. The 

values for these three species of A. solani, A. 

dumosa, and A. atra, respectively, had a 

decreasing trend for all effective wavelengths. 

 

 

Table 1. Average characteristic value related to effective wavelength for different species, A. solani, A. dumosa and A. 

atra 

Wavelength (nm) A. solani A. dumosa A. atra 

432.65 0.019 0.017 0.014 

481.43 0.016 0.009 0.007 

545.93 0.050 0.033 0.031 

626.96 0.056 0.050 0.039 

689.80 0.051 0.034 0.031 

755.12 0.046 0.040 0.032 

854.34 0.044 0.042 0.036 

945.29 0.055 0.039 0.029 

 

Fungus growing stage  

The PCA diagram of related to different 

growing days of A. solani, A. dumosa, A. atra 

specieshave been presented in Fig. 3a-c. The 

effective image channels corresponding to 

different days for all studied fungi species were 

selected based on the peaks in the diagrams. Also, 

the effective wavelengths corresponding to the 

selected image channels were presented in Table 

2.   
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Figure 3. Alternaria fungus with A. solani (top), A. dumosa (middle), and A. atra (bottom) species. D-1 to 4 

represent the first to fourth day of fungal growth, respectively. 
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Table 2. The effective image channels and wavelengths to differentiate different growing days of the studied fungi. 

Fungal species Image channels Wavelengths 

A. solani 
186, 198, 285, 368, 392, 510, 518, 

560, 596, 598, 633, 649 

533.37, 563.29, 581.48, 638.53, 703.85, 779.92, 821.26, 

827.88, 862.61, 892.37, 922.97, 936.20. 

A. dumosa 
383, 549, 552, 584, 591, 614, 626, 

630, 631, 632, 638, 648, 659, 663 

716.21, 853.51, 855.99, 882.45, 888.24, 907.26, 917.18, 

920.49, 921.31, 922.14, 927.10, 935.37, 944.46, and 

947.77. 

A. atra 
461, 555, 617, 621, 631, 641, 644, 

655, 656, 658, 660, 

780.75, 858.47, 909.74, 913.09, 921.31, 929.58, 932.06, 

941.16, 941.98, 943.64, and 945.29. 

 

The values of the mean feature extracted from 

the hypercubes related to the effective 

wavelengths for three different species of A. 

solani, A. dumosa, and A. atra at different 

growing stages were presented in Table 3-5. The 

highest and lowest values were observed for the 

first day and fourth day, respectively. 

 
Table 3. The mean feature value corresponding the effective wavelengths for A. solani in four days. 

W* (nm) d1 d2 d3 d4 

533.37 0.076 0.044 0.036 0.025 

563.29 0.062 0.046 0.030 0.001 

581.48 0.071 0.068 0.031 0.030 

638.53 0.071 0.070 0.037 0.027 

703.85 0.054 0.044 0.040 0.024 

779.92 0.079 0.064 0.046 0.032 

821.26 0.050 0.045 0.040 0.002 

827.88 0.059 0.051 0.030 0.015 

862.61 0.066 0.054 0.047 0.004 

892.37 0.053 0.028 0.025 0.017 

922.97 0.073 0.066 0.013 0.005 

936.20 0.108 0.066 0.030 0.019 

*W and d indicate wavelength and day, respectively. 

 

As is seen in Table 3, the values corresponding 

to the effective wavelengths for A. solani were 

different for four days. The values for 1 to 4-day 

had decreasing trends for all effective 

wavelengths. The values corresponding to the 

effective wavelengths for 1 to 4 days were in the 

range of 0.050-0.108, 0.028-0.070, 0.030-0.047, 

and 0.001-0.032 respectively. The highest values 

for 1 to 4 days were observed at 936.20, 533.37, 

922.97, and 703.85 nm, respectively. The highest 

differences between the values of 1 and 2-day, 2 

and 3-day, and 3 and 4-day were observed at 

936.20 (0.108-0.66=0.042), 922.97 (0.066-

0.013=0.053), and 862.61 nm (0.047-

0.004=0.043), respectively. So, there can be told 

that the best wavelengths for differentiation of the 

different days of A. solani were 936.2, 922.9, and 

862.61 nm.  
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Table 4. The mean feature value corresponding the effective wavelengths for A. dumosa in four days. 

W* (nm) d1 d2 d3 d4 

716.21 0.061 0.057 0.046 0.031 

853.51 0.061 0.053 0.036 0.004 

855.99 0.064 0.029 0.024 0.010 

882.45 0.067 0.053 0.017 0.01 

888.24 0.078 0.066 0.045 0.044 

907.26 0.067 0.063 0.050 0.038 

917.18 0.077 0.057 0.037 0.023 

920.49 0.069 0.049 0.04 0.021 

921.31 0.064 0.036 0.031 0.01 

922.14 0.082 0.051 0.045 0.017 

927.10 0.075 0.068 0.038 0.012 

935.37 0.073 0.053 0.04 0.037 

944.46 0.080 0.066 0.048 0.041 

947.77 0.088 0.051 0.044 0.034 

*W and d indicate wavelength and day, respectively. 
 

Table 4 shows that the values of effective 

wavelength for A. dumosa were different for four 

days. In all effective wavelengths, the average 

values for 1 to 4 days had a decreasing trend. The 

average values of effective wavelength for 1 to 4 

days were in the range of 0.061-0.088, 0.029-

0.068, 0.017-0.05, and 0.004-0.044, respectively. 

The highest values for 1 to 4 days were observed 

at effective wavelengths of 947.77, 922.14, 

944.46, 888.24 nm, respectively. Therefore, it can 

be said that the best wavelength for 

differentiating different days of A. dumosa was 

947.77, 922.14, 944.46, 888.24 nm. 

 
Table 5. The mean feature value corresponding the effective wavelengths for A. atra in four days. 

W* (nm) d1 d2 d3 d4 

780.75 0.051 0.042 0.039 0.032 

858.47 0.061 0.032 0.028 0.019 

909.79 0.056 0.040 0.024 0.018 

913.04 0.055 0.051 0.041 0.018 

921.31 0.056 0.04 0.035 0.033 

929.58 0.059 0.044 0.043 0.029 

932.06 0.086 0.056 0.045 0.038 

941.16 0.087 0.051 0.042 0.015 
941.98 0.049 0.030 0.025 0.028 

943.64 0.065 0.055 0.036 0.025 

945.29 0.036 0.034 0.023 0.017 

W* and d indicate wavelength and day, respectively. 

 

As can be seen in Table 5, the values of the 

effective wavelength for A. atra were different 

for four days. In all effective wavelengths, the 

average values for 1 to 4 days had a decreasing 

trend. The highest average value was for the 

effective wavelength of 941.16, which was in the 

range of 0.015-0.087. And the lowest average 

value was for the wavelength of 945.29, which 

was in the range of 0.017-0.036. The highest 

values for 1 to 4 days were at the effective 

wavelengths of 941.16, 932.06, 943.64, and 

858.47 nm, respectively. Therefore, it can be said 

that the best wavelength for differentiating 

different days of A. atra was 941.16, 932.06, 

943.64, and 858.47 nm. 

CONCLUSIONS 

In the present study, the effect of day on 

different fungal isolates and also the comparison 

of different fungal isolates was done. It is 

concluded that with increasing the time of 

enzyme activity, the enzyme activity increased, 

which causes the color of the solution to become 
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brighter. That there is a significant difference 

between different days of enzyme activity. With 

increasing the duration of enzyme activity, fungal 

growth increases. Also, in the comparison 

between different fungal isolates, an observable 

difference was found between different isolates. 
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