Evaluation of Environmental Parameters and Energy Consumption in Milk Powder Production

Document Type : Original Research

Authors

Department of Agricultural Machinery Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Abstract

The present study examines energy indicators and environmental impacts related to the production of milk powder in the Moghan Fertile Plain, Iran. This study evaluated energy indicators by determining the consumption and production of energy across various stages of milk powder manufacturing, including fodder supply, milk provision, and milk powder processing. Furthermore, cumulative exergy demand index was used to estimate different forms of energy consumption in the production of one ton of milk powder. In milk powder production, energy consumption across three production stages was found to be 7486.13 MJ/ton, while output energy in those stages amounted to 3063.62 MJ/ton. Consumption of natural gas, diesel, and diesel fuel amounted to 1930.5, 1864.2, and 1805.7 MJ/ton of energy consumption, respectively. These inputs were predominantly attributed to the fodder production process, indicating its significant role in energy consumption during milk powder manufacturing. In conclusion, optimizations in production and efficient energy utilization within the fodder production stage show potential to minimize energy consumption in milk powder production. The study reveals that the energy consumption during milk powder production exceeds the produced energy. With a global warming potential of 0.02 kg CO₂, emissions are minimal.

Keywords


Aghbashlo, M. (2023). Exergy-based sustainability analysis of food production systems. Planetary Sustainability1(1), 19-44. https://doi.org/10.46754/ps.2023.07.003
Ahmad, T., Aadil, R.M., Ahmed, H., ur Rahman, U., Soares, B.C., Souza, S.L., Pimentel, T.C., Scudino, H., Guimarães, J.T., Esmerino, E.A. & Freitas, M.Q. (2019). Treatment and utilization of dairy industrial waste: A review. Trends in Food Science & Technology88, 361-372. https://doi.org/10.1016/j.tifs.2019.04.003
 Beheshti Tabar, I., Keyhani, A., & Rafiee, S. (2010). Energy balance in Iran's agronomy (1990–2006). Renewable and Sustainable Energy Reviews14(2), 849-855. https://doi.org/10.1016/j.rser.2009.10.024
Coley, D. A., Goodliffe, E., & Macdiarmid, J. (1998). The embodied energy of food: the role of diet. Energy policy26(6), 455-460. https://doi.org/10.1016/S0301-4215(97)00159-6
Da Silva, D. V., Pavan, A. L. R., de Faria, L. C., Piekarski, C. M., Saavedra, Y. M. B., & Silva, D. A. L. (2024). Opportunities to integrate Ecosystem Services into Life Cycle Assessment (LCA): a case study of milk production in Brazil. Ecosystem Services69, 101646. https://doi.org/10.1016/j.ecoser.2024.101646
Djaeni, M., Bartels, P., Sanders, J., van Straten, G., & van Boxtel, A. J. B. (2007). Multistage zeolite drying for energy-efficient drying. Drying Technology, 25(6), 1053-1067. https://doi.org/10.1080/07373930701396535
Duval, J., Cournut, S., & Hostiou, N. (2021). Livestock farmers’ working conditions in agroecological farming systems. A review. Agronomy for Sustainable Development41(2), 22. https://doi.org/10.1007/s13593-021-00679-y
Fellows, P. J. (2022). Food processing technology: Principles and practice. Woodhead Publishing
Frorip, J., Kokin, E., Praks, J., Poikalainen, V., Ruus, A., Veermäe, I., Lepasalu, L., Schäfer, W., Mikkola, H. & Ahokas, J. (2012). Energy consumption in animal production-case farm study. Agron. Res10(1), 39-48.
Gezer, I., Acaroǧlu, M., & Haciseferoǧullari, H. (2003). Use of energy and labour in apricot agriculture in Turkey. Biomass and Bioenergy24(3), 215-219. https://doi.org/10.1016/S0961-9534(02)00116-2
Guillén-Burrieza, E., Zaragoza, G., Miralles-Cuevas, S., & Blanco, J. (2012). Experimental evaluation of two pilot-scale membrane distillation modules used for solar desalination. Journal of Membrane Science409, 264-275. https://doi.org/10.1016/j.memsci.2012.03.063
Hospido, A., Moreira, M. T., & Feijoo, G. (2003). Simplified life cycle assessment of Galician milk production. International Dairy Journal13(10), 783-796. https://doi.org/10.1016/S0958-6946(03)00100-6
Houshyar, E., Zareifard, H. R., Grundmann, P., & Smith, P. (2015). Determining efficiency of energy input for silage corn production: An econometric approach. Energy93, 2166-2174. https://doi.org/10.1016/j.energy.2015.09.105
 
Kabato, W., Getnet, G. T., Sinore, T., Nemeth, A., & Molnár, Z. (2025). Towards climate-smart agriculture: Strategies for sustainable agricultural production, food security, and greenhouse gas reduction. Agronomy15(3), 565.‏
Kitani, O., Jungbluth, T., Peart, R. M., & Ramdani, A. (1999). CIGR handbook of agricultural engineering. Energy and biomass engineering5(792), 330.‏
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Taromi, K. (2014). Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Engineering in agriculture, environment and food7(4), 155-162. https://doi.org/10.1016/j.eaef.2014.06.001
Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable energy29(1), 39-51. https://doi.org/10.1016/S0960-1481(03)00135-6
Phipps, R. H., Grandison, A. S., Jones, A. K., Juniper, D. T., Ramos-Morales, E., & Bertin, G. (2008). Selenium supplementation of lactating dairy cows: effects on milk production and total selenium content and speciation in blood, milk and cheese. Animal2(11), 1610-1618.‏
Pishgar-Komleh, S. H., Sefeedpari, P., & Rafiee, S. (2011). Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy36(10), 5824-5831. https://doi.org/10.1016/j.energy.2011.08.044
Ramirez, C. A., Patel, M., & Blok, K. (2006). From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry. Energy31(12), 1984-2004. https://doi.org/10.1016/j.energy.2005.10.014
Reinecke, R., Blignaut, J. N., Meissner, H. H., & Swanepoel, P. A. (2024). Advancing carbon sequestration and nutrient management in the south African dairy industry for sustainable growth. Frontiers in Sustainable Food Systems8, 1397305. https://doi.org/10.1016/j.energy.2005.10.014
Rezvani, Z., Mortezapour, H., Ameri, M., & Akhavan, H. R. (2022). Configuration designs and recent applications of photovoltaic-thermal solar collectors for drying agricultural material: a review. Biomechanism and Bioenergy Research1(1), 34-46. https://doi.org/10.22103/bbr.2022.18904.1002
Roustaee, R., Rafiee, H., Ghodsi, D., Omidvar, N., Hosseini, H., Toorang, F., & Eini-Zinab, H. (2023). Challenges and obstacles to dairy consumption in Iran from stakeholders’ perspectives using a food system approach. Sustainability15(16), 12568.‏ https://doi.org/10.3390/su151612568
Sharifi, M. & Soodmand-Moghaddam, S. (2024). Econometric Analysis of Energy Consumption Pattern of Different Tillage Methods in Corn Cultivation. Biomechanism and Bioenergy Research, 3(2), 88-97. https://doi.org/10.22103/bbr.2024.24168.1091
Sharifi, M., Soodmand-Moghaddam, S., & Moloudi, H. (2024). Investigation of environmental, energy and economic indicators of the turkey breeding farms: a case study in West Azarbaijan and Zanjan, Iran. Environment, Development and Sustainability26(9), 24221-24245. https://doi.org/10.1007/s10668-023-03642-x
Soodmand-Moghaddam, S., Sharifi, M., Khanali, M., & Hoseinzade Bandbafha, H. (2024). Evaluation of the environmental sustainability of the integrated biorefinery for the production of chicken meat and biological products. Journal of Agricultural Mechanization8(4), 1-27.
Tsatsarelis, C. A., & Koundouras, D. S. (1994). Energetics of baled alfalfa hay production in northern Greece. Agriculture, ecosystems & environment49(2), 123-130.‏
Yildirim, N., & Genc, S. (2017). Energy and exergy analysis of a milk powder production system. Energy Conversion and Management149, 698-705. https://doi.org/10.1016/j.enconman.2017.01.064