Abbaspour-Gilandeh, Y., Kaveh, M., Fatemi, H., Hernández-Hernández, J. L., Fuentes-Penna, A., & Hernández-Hernández, M. (2020). Evaluation of the changes in thermal, qualitative, and antioxidant properties of terebinth (Pistacia atlantica) fruit under different drying methods.
Agronomy, 10(9), 1378.
https://doi.org/10.3390/agronomy10091378
Agbede, O. O., Oke, E. O., Akinfenwa, S. I., Wahab, K. T., Ogundipe, S., Aworanti, O. A., Arinkoola, A. O., Agarry, S. E., Ogunleye, O. O., & Osuolale, F. N. (2020). Thin layer drying of green microalgae (Chlorella sp.) paste biomass: Drying characteristics, energy requirement and mathematical modeling.
Bioresource Technology Reports, 11, 100467.
https://doi.org/10.1016/j.biteb.2020.100467
Ahmed, M., Faisal, M., Laskar, A., Abdullah, A., Shahadat, M., Umar, K., Kamyab, H., Ubaidullah, M., Pandit, B., & Prakash, C. (2023). Experimental studies for thin layer model validation and microwave drying characteristics of beetroot considering energy optimization.
Fuel, 346, 128345.
https://doi.org/10.1016/j.fuel.2023.128345
Ambawat, S., Sharma, A., & Saini, R. K. (2022). Mathematical modeling of thin layer drying kinetics and moisture diffusivity study of pretreated Moringa oleifera leaves using fluidized bed dryer.
Processes, 10(11), 2464.
https://doi.org/10.3390/pr10112464
Bissaro, C. A., de Souza Matias, G., Defendi, R. O., & de Matos Jorge, L. M. (2022). Modeling the drying kinetics of soybeans under intermittent operation in thin layer.
Food and Bioproducts Processing, 136, 226-235.
https://doi.org/10.1016/j.fbp.2022.10.006
Biswas, R., Hossain, M. A., & Zzaman, W. (2022). Thin layer modeling of drying kinetics, rehydration kinetics and color changes of osmotic pre-treated pineapple (Ananas comosus) slices during drying: Development of a mechanistic model for mass transfer.
Innovative Food Science & Emerging Technologies, 80, 103094.
https://doi.org/10.1016/j.ifset.2022.103094
Cavalcanti‐Mata, M. E. R. M., Duarte, M. E. M., Lira, V. V., de Oliveira, R. F., Costa, N. L., & Oliveira, H. M. L. (2020). A new approach to the traditional drying models for the thin‐layer drying kinetics of chickpeas.
Journal of Food Process Engineering, 43(12), e13569.
https://doi.org/10.1111/jfpe.13569
Darvishi, H., Khosh, T. M., Najafi, G., & Nargesi, F. (2013). Mathematical modeling of green pepper drying in microwave-convective dryer. Journal of Agricultural Science and Technology, 15, 457-465.
Doymaz, I., KIPÇAK, A., & Piskin, S. (2015). Microwave drying of green bean slices: drying kinetics and physical quality.
Czech Journal of Food Sciences, 33(4), 367–376
https://doi.org/10.17221/566/2014-CJFS
Gharehbeglou, P., Askari, B., Rad, A. H., Hoseini, S. S., Pour, H. T., & Rad, A. H. E. (2014). Investigating of drying kinetics and mathematical modeling of turnip. Agricultural Engineering International: CIGR Journal, 16(3), 194-204.
Guemouni, S., Mouhoubi, K., Brahmi, F., Dahmoune, F., Belbahi, A., Benyoub, C., Adjeroud‐Abdellatif, N., Atmani, K., Bakhouche, H., & Boulekbache‐Makhlouf, L. (2022). Convective and microwave drying kinetics and modeling of tomato slices, energy consumption, and efficiency.
Journal of Food Process Engineering, 45(9), e14113.
https://doi.org/10.1111/jfpe.14113
Gull, A., Prasad, K., & Kumar, P. (2017). Drying kinetics of millet, poamce and wheat based pasta and its effect on microstructure, color, water absorption and pasting properties.
Journal of Food Measurement and Characterization, 11, 675-684.
https://doi.org/10.1007/s11694-016-9437-6
Hashemi, S. J., Ranjbar Nedamani, A., & Abdi, N. (2022). Changes in Effective Moisture Diffusivity and Activation Energy During the Drying of Apple Fruit (Yellow Delicious) with Microwave and Oven. Journal of food science and technology (Iran), 19(127), 281-289.
Horuz, E., Bozkurt, H., Karatas, H., & Maskan, M. (2020). Microwave-conventional drying characteristics of red pepper: modeling, temperature profile, diffusivity and activation energy. Journal of Agricultural Science and Technology, 22(2), 425-437.
Jafari, H., Kalantari, D., & Azadbakht, M. (2018). Energy consumption and qualitative evaluation of a continuous band microwave dryer for rice paddy drying.
Energy, 142, 647-654.
https://doi.org/10.1016/j.energy.2017.10.065
Jahanbakhshi, A., Kaveh, M., Taghinezhad, E., & Rasooli Sharabiani, V. (2020). Assessment of kinetics, effective moisture diffusivity, specific energy consumption, shrinkage, and color in the pistachio kernel drying process in microwave drying with ultrasonic pretreatment.
Journal of Food Processing and Preservation, 44(6), e14449.
https://doi.org/10.1111/jfpp.14449
Karami, H., & Lorestani, A. N. (2021). The Effect of Different Drying Methods on Drying Kinetics, Mathematical Modeling, Quantity and Quality of Thyme Essential Oil.
Journal of food science and technology (Iran), 18(113), 135-146.
https://doi.org/10.52547/fsct.18.113.135
Kaveh, M., & Amiri Chayjan, R. (2017). Modeling thin‐layer drying of turnip slices under semi‐industrial continuous band dryer.
Journal of Food Processing and Preservation, 41(2), e12778.
https://doi.org/10.1111/jfpp.12778
Kaveh, M., Sharabiani, V. R., Chayjan, R. A., Taghinezhad, E., Abbaspour-Gilandeh, Y., & Golpour, I. (2018). ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer.
Information Processing in Agriculture, 5(3), 372-387.
https://doi.org/10.1016/j.inpa.2018.05.003
Keramat Bacheh Jackie, S., Sharifian, F., Aghazadeh, M., Aghazadeh, R., & Moeini, A. (2022). A Study on Drying Kinetics of Rhubarb Medical Plant by an Infrared Dryer.
Biomechanism and Bioenergy Research,
1(2), 80-85.
https://doi.org/10.22103/BBR.2022.20575.1033
Kong, D., Wang, Y., Li, M., Liu, X., Huang, M., & Li, X. (2021). Analysis of drying kinetics, energy and microstructural properties of turnips using a solar drying system.
Solar Energy, 230, 721-731.
https://doi.org/10.1016/j.solener.2021.10.073
Kouhila, M., Moussaoui, H., Bahammou, Y., Tagnamas, Z., Lamsyehe, H., Lamharrar, A., & Idlimam, A. (2020). Exploring drying kinetics and energy exergy performance of Mytilus Chilensis and Dosidicus gigas undergoing microwave treatment.
Heat and Mass Transfer, 56, 2985-2999.
https://doi.org/10.1007/s00231-020-02909-7
Kumar, Y., Singh, L., Sharanagat, V. S., & Tarafdar, A. (2021). Artificial neural network (ANNs) and mathematical modelling of hydration of green chickpea.
Information Processing in Agriculture, 8(1), 75-86.
https://doi.org/10.1016/j.inpa.2020.04.001
Laskar, A. A., Ahmed, M., Vo, D.-V. N., Abdullah, A., Shahadat, M., Mahmoud, M. H., Khan, W., & Yusuf, M. (2023). Mathematical modeling and regression analysis using MATLAB for optimization of microwave drying efficiency of banana.
Thermal Science and Engineering Progress, 46, 102157.
https://doi.org/10.1016/j.tsep.2023.102157
Liu, J., Li, X., Yang, Y., Wei, H., Xue, L., Zhao, M., & Cai, J. (2021). Optimization of combined microwave and hot air drying technology for purple cabbage by Response Surface Methodology (RSM).
Food Science & Nutrition, 9(8), 4568-4577.
https://doi.org/10.1002/fsn3.2444
Minaei, S., Motevali, A., Hematian, R., Abbasi, S., Ghaderi, A., & Najafi, G. (2013). Investigation of the variation of drying rate, effective diffusion coefficient, activation energy, and energy consumption for mushroom slices using microwave–vacuum drier. Journal of Food Science and Technology, 10(41), 1-12.
Moradi, M., Fallahi, M. A., & Mousavi Khaneghah, A. (2020). Kinetics and mathematical modeling of thin layer drying of mint leaves by a hot water recirculating solar dryer.
Journal of Food Process Engineering, 43(1), e13181.
https://doi.org/10.1111/jfpe.13181
Moura, H. V., de Figueirêdo, R. M. F., de Melo Queiroz, A. J., de Vilela Silva, E. T., Esmero, J. A. D., & Lisbôa, J. F. (2021). Mathematical modeling and thermodynamic properties of the drying kinetics of trapiá residues.
Journal of Food Process Engineering, 44(8), e13768.
https://doi.org/10.1111/jfpe.13768
Omolola, A. O., Jideani, A. I. O., Kapila, P. F., & Jideani, V. A. (2015). Optimization of microwave drying conditions of two banana varieties using response surface methodology.
Food Science and Technology, 35, 438-444.
https://doi.org/10.1590/1678-457X.6700
Pir Moradi, M., & Mostafaei, M. (2018). Evaluation of the best kinetic model in thin layer drying of kumquat based on desirability function. Journal of Agricultural Mechanization, 4(1), 57-67.
Taghinezhad, E., Kaveh, M., & Szumny, A. (2021). Optimization and prediction of the drying and quality of turnip slices by convective-infrared dryer under various pretreatments by RSM and ANFIS methods.
Foods, 10(2), 284.
https://doi.org/10.3390/foods10020284
Tüfekçi, S., & Özkal, S. G. (2023). The optimization of hybrid (Microwave–Conventional) drying of sweet potato using response surface methodology (RSM). Foods, 12(16), 3003.
Tunde-Akintunde, T., & Ogunlakin, G. (2013). Mathematical modeling of drying of pretreated and untreated pumpkin.
Journal of food science and technology, 50, 705-713.
https://doi.org/10.1007/s13197-011-0392-2
Türkmen Erol, N. (2022). Mathematical modelling of thin layer dried potato and effects of different variables on drying behaviour and quality characteristics.
Potato Research, 65(1), 65-82.
https://doi.org/10.1007/s11540-021-09509-w
Wang, R., Zhao, D., Gao, Y., Xu, Q., Wu, L., & Li, Z. (2022). Power control in microwave drying of green turnip.
Drying Technology, 40(10), 2153-2163.
https://doi.org/10.1080/07373937.2021.1927073
Zadhossein, S., Abbaspour-Gilandeh, Y., Kaveh, M., Szymanek, M., Khalife, E., D. Samuel, O., Amiri, M., & Dziwulski, J. (2021). Exergy and energy analyses of microwave dryer for cantaloupe slice and prediction of thermodynamic parameters using ANN and ANFIS algorithms.
Energies, 14(16), 4838.
https://doi.org/10.3390/en14164838
Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices.
Journal of the Saudi society of agricultural sciences, 14(1), 41-47.
https://doi.org/10.1016/j.jssas.2013.06.002
Zhao, P., Liu, C., Qu, W., He, Z., Gao, J., Jia, L., Ji, S., & Ruan, R. (2019). Effect of temperature and microwave power levels on microwave drying kinetics of Zhaotong lignite.
Processes, 7(2), 74.
https://doi.org/10.3390/pr7020074