Ashour, A. S., Guo, Y., Hawas, A. R., & Xu, G. (2018). Ensemble of subspace discriminant classifiers for schistosomal liver fibrosis staging in mice microscopic images.
Health information science and systems, 6, 1-10.
https://doi.org/10.1007/s13755-018-0059-8
Bachir, N., Haddarah, A., SEPULCRE, F., & PUJOLA, M. (2024). Derivation of a no significant risk level (NSRL) of acrylamide in potato-based synthetic models and validation by NIR spectroscopy.
Food Chemistry Advances, 4, 100652.
https://doi.org/10.1016/j.focha.2024.100652
Biney, J. K. M., Blöcher, J. R., Borůvka, L., & Vašát, R. (2021). Does the limited use of orthogonal signal correction pre-treatment approach to improve the prediction accuracy of soil organic carbon need attention?
Geoderma, 388, 114945.
https://doi.org/10.1016/j.geoderma.2021.114945
de Brito, A. A., Campos, F., dos Reis Nascimento, A., Damiani, C., da Silva, F. A., de Almeida Teixeira, G. H., & Júnior, L. C. C. (2022). Non-destructive determination of color, titratable acidity, and dry matter in intact tomatoes using a portable Vis-NIR spectrometer.
Journal of Food Composition and Analysis, 107, 104288.
https://doi.org/10.1016/j.jfca.2021.104288
ISO (International Organization for Standardization). (1984). Fruit, vegetable and derived products - Determination of nitrite and nitrate content - Molecular absorption spectrometric method (Tech. Rep., Standard No. 6635).
INSO (Iranian National Standardization Organization). (2013). Maximum levels for nitrates in agricultural products (Standard No. 16596). (in Persian)
Ito, H. (2014). New ways to evaluate the quality of vegetables using instruments.
Japan Agricultural Research Quarterly: JARQ, 48(2), 111-120.
https://doi.org/10.6090/jarq.48.111
Ito, H., Horie, H., Ippoushi, K., & Azuma, K. (2003). Potential of Visible-Near Infrared (VIS-NIR) Spectroscopy for Non-destructive Estimation of Nitrate Content Oin Japanese Radishes. International Conference on Quality in Chains. An Integrated View on Fruit and Vegetable Quality 604,
Itoh, H., Nomura, K., Shiraishi, N., Uno, Y., Kuroki, S., & Ayata, K. (2015). Continuous measurement of nitrate concentration in whole lettuce plant by visible-near-infrared spectroscopy.
Environmental Control in Biology, 53(4), 205-215.
https://doi.org/10.2525/ecb.53.205
Itoh, H., Tomita, H., Uno, Y., & Shiraishi, N. (2011). Development of method for non-destructive measurement of nitrate concentration in vegetable leaves by near-infrared spectroscopy.
IFAC Proceedings Volumes, 44(1), 1773-1778.
https://doi.org/10.3182/20110828-6-IT-1002.00738
Jamshidi, B., Mohajerani, E., & Jamshidi, J. (2016). Developing a Vis/NIR spectroscopic system for fast and non-destructive pesticide residue monitoring in agricultural product.
Measurement, 89, 1-6.
https://doi.org/10.1016/j.measurement.2016.03.069
Jamshidi, B., Mohajerani, E., Jamshidi, J., Minaei, S., & Sharifi, A. (2015). Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy.
Food Additives & Contaminants: Part A, 32(6), 857-863.
https://doi.org/10.1080/19440049.2015.1031192
Jamshidi, B., & Yazdanfar, N. (2022). Development of a spectroscopic approach for non-destructive and rapid screening of cucumbers based on maximum limit of nitrate accumulation.
Journal of Food Composition and Analysis, 110, 104513.
https://doi.org/10.1016/j.jfca.2022.104513
Kara, M., & Dasgan, H. (2018). Nitrate, nitrite and chlorophyll contents in parsley and their relationships with each other. XXX International Horticultural Congress IHC2018: International Symposium on Fruit and Vegetables for Processing, International 1292,
Li, S., Li, J., Wang, Q., Shi, R., Yang, X., & Zhang, Q. (2024). Determination of soluble solids content of multiple varieties of tomatoes by full transmission visible-near infrared spectroscopy.
Frontiers in Plant Science, 15, 1324753.
https://doi.org/10.3389/fpls.2024.1324753
Mounce, S., Ellis, K., Edwards, J., Speight, V., Jakomis, N., & Boxall, J. (2017). Ensemble decision tree models using RUSBoost for estimating risk of iron failure in drinking water distribution systems.
Water Resources Management, 31, 1575-1589.
https://doi.org/10.1007/s11269-017-1595-8
Rahi, S., Mobli, H., Jamshidi, B., Azizi, A., & Sharifi, M. (2020). Different supervised and unsupervised classification approaches based on visible/near infrared spectral analysis for discrimination of microbial contaminated lettuce samples: Case study on E. coli ATCC.
Infrared Physics & Technology, 108, 103355.
https://doi.org/10.1016/j.infrared.2020.103355
Torres, I., Sánchez, M.-T., Vega-Castellote, M., Luqui-Muñoz, N., & Pérez-Marín, D. (2021). Routine NIRS analysis methodology to predict quality and safety indexes in spinach plants during their growing season in the field.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, 118972.
https://doi.org/10.1016/j.saa.2020.118972
Wiedemair, V., Langore, D., Garsleitner, R., Dillinger, K., & Huck, C. (2019). Investigations into the performance of a novel pocket-sized near-infrared spectrometer for cheese analysis.
Molecules, 24(3), 428.
https://doi.org/10.3390/molecules24030428
WHO (World Health Organization). (1978). Nitrates, nitrites and N–nitroso compounds (Environmental Health Criteria No. 5).