Aggelopoulos, C. A. (2022). Recent advances of cold plasma technology for water and soil remediation: A critical review.
Chemical Engineering Journal,
428, 131657.
https://doi.org/10.1016/j.cej.2021.131657
Aghajanzadeh, S., Kashaninejad, M., & Ziaiifar, A. M. (2016). Effect of infrared heating on degradation kinetics of key lime juice physicochemical properties.
Innovative Food Science & Emerging Technologies,
38, 139-148.
https://doi.org/10.1016/j.ifset.2016.09.027
Al-Antary, T. M., Shaderma, A. M., & Al-Dabbas, M. B. (2018). Ozonation treatment effect on spiked chlorfenapyr pesticide on tomato fruits. Fresenius Environmental Bulletin, 27(11), 7822-7826.
Al-Dabbas, M. M., Shaderma, A. A., Al-Antary, T. M., Ghazzawi, H. A., & Hamad, H. J. (2018). Effect of ozonation on cypermethrin and chlorpyrifos pesticides residues degradation in tomato fruits. Fresenius Environmental Bulletin, 27(10), 6628-6633.
Álvarez, I., Condón, S., & Raso, J. (2006).. Microbial inactivation by pulsed electric fields.
Pulsed electric fields technology for the food industry: Fundamentals and applications, 97-129.
https://doi.org/10.1007/978-0-387-31122-7_4
Amiali, M., Ngadi, M. O., Raghavan, V. G., & Nguyen, D. (2006). Electrical conductivities of liquid egg products and fruit juices exposed to high pulsed electric fields.
International Journal of Food Properties,
9(3), 533-540.
https://doi.org/10.1080/10942910600596456
Ariç Sürme, S., & Sabancı, S. (2021). The usage of Ohmic heating in milk evaporation and evaluation of electrical conductivity and performance analysis.
Journal of Food Processing and Preservation,
45(9), e15522.
https://doi.org/10.1111/jfpp.15522
Aslan, Y. (2016). The effect of dielectric barrier discharge plasma treatment on the microorganisms found in raw cow’s milk.
Türkiye Tarımsal Araştırmalar Dergisi,
3(2), 169-173.
https://doi.org/10.19159/tutad.34744
Astráin-Redín, L., Ospina, S., Cebrián, G., & Álvarez-Lanzarote, I. (2024). Ohmic heating technology for food applications, from ohmic systems to moderate electric fields and pulsed electric fields.
Food Engineering Reviews,
16(2), 225-251.
https://doi.org/10.1007/s12393-024-09368-4
Bae, S.-C., Park, S. Y., Choe, W., & Ha, S.-D. (2015). Inactivation of murine norovirus-1 and hepatitis A virus on fresh meats by atmospheric pressure plasma jets.
Food Research International,
76, 342-347.
https://doi.org/10.1016/j.foodres.2015.06.039
Barbhuiya, R. I., Singha, P., & Singh, S. K. (2021). A comprehensive review on impact of non-thermal processing on the structural changes of food components.
Food Research International,
149, 110647.
https://doi.org/10.1016/j.foodres.2021.110647
Cevik, M. (2021). Electrical conductivity and performance evaluation of verjuice concentration process using ohmic heating method.
Journal of Food Process Engineering,
44(5), e13672.
https://doi.org/10.1111/jfpe.13672
Ciarrocchi, I. R., Mendes, K. F., Pimpinato, R. F., Spoto, M. H. F., & Tornisielo, V. L. (2021). The effect of radiation in the degradation of carbendazim and azoxystrobin in strawberry.
Radiation physics and chemistry,
179, 109269.
https://doi.org/10.1016/j.radphyschem.2020.109269
Cong, L., Huang, M., Zhang, J., & Yan, W. (2021). Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce.
Journal of the Science of Food and Agriculture,
101(2), 424-432.
https://doi.org/10.1002/jsfa.10651
Darvishi, H., Hosainpour, A., Nargesi, F., & Fadavi, A. (2015). Exergy and energy analyses of liquid food in an Ohmic heating process: A case study of tomato production.
Innovative Food Science & Emerging Technologies,
31, 73-82.
https://doi.org/10.1016/j.ifset.2015.06.012
Darvishi, H., Salami, P., Fadavi, A., & Saba, M. K. (2020). Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating.
Food and Bioproducts Processing,
123, 102-110.
https://doi.org/10.1016/j.fbp.2020.06.003
De Souza, L. P., Faroni, L. R. D. A., Heleno, F. F., Pinto, F. G., de Queiroz, M. E. L. R., & Prates, L. H. F. (2018). Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology.
Food Chemistry,
243, 435-441.
https://doi.org/10.1016/j.foodchem.2017.09.134
Delsart, C., Franc, C., Grimi, N., De Revel, G., Vorobiev, E., & Peuchot, M. M. (2016). Effects of pulsed electric fields on four residual fungicides in white wines. 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies: Portorož, Slovenia, September 6–10,
2015 (pp. 124-127). Springer Singapore.
https://doi.org/10.1007/978-981-287-817-5_27
Ekezie, F.-G. C., Sun, D.-W., & Cheng, J.-H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends.
Trends in Food Science & Technology,
69, 46-58.
https://doi.org/10.1016/j.tifs.2017.08.007
El Kantar, S., Boussetta, N., Lebovka, N., Foucart, F., Rajha, H. N., Maroun, R. G., . . . Vorobiev, E. (2018). Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction.
Innovative Food Science & Emerging Technologies,
46, 153-161.
https://doi.org/10.1016/j.ifset.2017.09.024
Fenoglio, D., Ferrario, M., Schenk, M., & Guerrero, S. (2019). UV-C light inactivation of single and composite microbial populations in tangerine-orange juice blend. Evaluation of some physicochemical parameters.
Food and Bioproducts Processing,
117, 149-159.
https://doi.org/10.1016/j.fbp.2019.07.005
Fenoglio, D., Ferrario, M., Schenk, M., & Guerrero, S. (2020). Effect of pilot-scale UV-C light treatment assisted by mild heat on E. coli, L. plantarum and S. cerevisiae inactivation in clear and turbid fruit juices. Storage study of surviving populations.
International journal of food microbiology,
332, 108767.
https://doi.org/10.1016/j.ijfoodmicro.2020.108767
Fernandes, F. A., & Rodrigues, S. (2021). Cold plasma processing on fruits and fruit juices: A review on the effects of plasma on nutritional quality.
Processes,
9(12), 2098.
https://doi.org/10.3390/pr9122098
Ferreira, A. R., Guedes, P., Mateus, E. P., Ribeiro, A. B., & Couto, N. (2020). Emerging organic contaminants in soil irrigated with effluent: Electrochemical technology as a remediation strategy.
Science of The Total Environment,
743, 140544.
https://doi.org/10.1016/j.scitotenv.2020.140544
Garg, N., Aggarwal, M., Javed, S., & Khandal, R. K. (2013). Studies for optimization of conditions for reducing aflatoxin contamination in peanuts using ultraviolet radiations. International Journal of Drug Development and Research, 5(3), 408-424.
Geveke, D. J., Brunkhorst, C., & Fan, X. (2007). Radio frequency electric fields processing of orange juice.
Innovative Food Science & Emerging Technologies,
8(4), 549-554.
https://doi.org/10.1016/j.ifset.2007.04.012
Giladi, M., Porat, Y., Blatt, A., Wasserman, Y., Kirson, E. D., Dekel, E., & Palti, Y. (2008). Microbial growth inhibition by alternating electric fields.
Antimicrobial agents and chemotherapy,
52(10), 3517-3522.
https://doi.org/10.1128/AAC.00673-08
Gouma, M., Álvarez, I., Condón, S., & Gayán, E. (2020). Pasteurization of carrot juice by combining UV-C and mild heat: Impact on shelf-life and quality compared to conventional thermal treatment.
Innovative Food Science & Emerging Technologies,
64, 102362.
https://doi.org/10.1016/j.ifset.2020.102362
Hsieh, C.-W., & Ko, W.-C. (2008). Effect of high-voltage electrostatic field on quality of carrot juice during refrigeration.
LWT-Food Science and Technology,
41(10), 1752-1757.
https://doi.org/10.1016/j.lwt.2008.01.009
Kaya, Z., & Unluturk, S. (2019). Pasteurization of verjuice by UV‐C irradiation and mild heat treatment.
Journal of Food Process Engineering,
42(5), e13131.
https://doi.org/10.1111/jfpe.13131
Kumar, R., Bawa, A., Kathiravan, T., & Nadanasabapathi, S. (2015). Optimization of pulsed electric field parameters for mango nectar processing using response surface methodology. International Food Research Journal, 22(4), 1353.
Kumar, N. S., Dar, A. H., Dash, K. K., Kaur, B., Pandey, V. K., Singh, A., Fayaz, U., Shams, R., Mukarram, S. A., & Kovács, B. (2024). Recent advances in Cold Plasma Technology for modifications of proteins: A comprehensive review.
Journal of Agriculture and Food Research, 101177.
https://doi.org/10.1016/j.jafr.2024.101177
Lacombe, A., Niemira, B. A., Gurtler, J. B., Sites, J., Boyd, G., Kingsley, D. H., . . . Chen, H. (2017). Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma.
Food microbiology,
63, 1-5.
https://doi.org/10.1016/j.fm.2016.10.030
Maghsoudi, H., Balvardi, M., Ganjovi, A., & Amir-Mojahedi, M.-S. (2023). Investigating the Effect of Cold Plasma on some Chemical Properties of Date Fruits (Phoenix dactylifera L.).
Biomechanism and Bioenergy Research,
2(1), 56-67.
https://doi.org/10.22103/BBR.2023.20459.1044
Meftaul, I. M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., & Megharaj, M. (2020). Pesticides in the urban environment: A potential threat that knocks at the door.
Science of The Total Environment,
711, 134612.
https://doi.org/10.1016/j.scitotenv.2019.134612
Mendes-Oliveira, G., Jin, T. Z., & Campanella, O. H. (2020). Modeling the inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density.
Journal of Food Engineering,
282, 110001.
https://doi.org/10.1016/j.jfoodeng.2020.110001
Mir, S. A., Dar, B., Mir, M. M., Sofi, S. A., Shah, M. A., Sidiq, T., . . . Khaneghah, A. M. (2022). Current strategies for the reduction of pesticide residues in food products.
Journal of Food Composition and Analysis,
106, 104274.
https://doi.org/10.1016/j.jfca.2021.104274
Mirzaii, M., Alfi, A., Kasaeian, A., Norozi, P., Nasiri, M., Darban Sarokhalil, D., Khoramrooz, S. S., Fazli, M., & Davardoost, F. (2015). Antibacterial effect of alternating current against Staphylococcus aureus and Pseudomonas aeroginosa. Russian Open Medical Journal, 4(2), 0203.
https://doi.org/10.15275/rusomj.2015.0203
Mokhtarian, M., Tavakolipour, H., & Kalbasi-Ashtari, A. (2016). Energy and exergy analysis in solar drying of pistachio with air recycling system.
Drying Technology. 34(12), 1484-1500.
https://doi.org/10.1080/07373937.2015.1129499
Mortezapour, H., Rezvani, Z., Rashedifar, M., & Hajimohammadi-Farimani, R. (2023). Assessment of an ultraviolet-Assisted Continuous Infrared Dryer for producing intermediate moisture food from mushroom slices.
Iranian Journal of Chemistry and Chemical Engineering.
https://doi.org/10.30492/IJCCE.2023.2006960.6128
Ordudari, Z., & Rismanchian, M. (2023). A review of the application of plasma technology in air pollution control.
Occupational Medicine Quarterly Journal,
15(3), 78-93.
https://doi.org/10.18502/tkj.v15i3.13782
Phan, K. T. K., Phan, H. T., Boonyawan, D., Intipunya, P., Brennan, C. S., Regenstein, J. M., & Phimolsiripol, Y. (2018). Non-thermal plasma for elimination of pesticide residues in mango.
Innovative Food Science & Emerging Technologies,
48, 164-171.
https://doi.org/10.1016/j.ifset.2018.06.009
Ranjitha Gracy, T. K., Gupta, V., & Mahendran, R. (2019). Influence of low‐pressure nonthermal dielectric barrier discharge plasma on chlorpyrifos reduction in tomatoes.
Journal of Food Process Engineering,
42(6), e13242.
https://doi.org/10.1111/jfpe.13242
Rezaei, S., Ebadi, M.-T., Ghobadian, B., & Ghomi, H. (2021). Optimization of DBD-Plasma assisted hydro-distillation for essential oil extraction of fennel (Foeniculum vulgare Mill.) seed and spearmint (Mentha spicata L.) leaf.
Journal of Applied Research on Medicinal and Aromatic Plants,
24, 100300.
https://doi.org/10.1016/j.jarmap.2021.100300
Rodrigues, A. A. Z., de Queiroz, M. E. L. R., Neves, A. A., de Oliveira, A. F., Prates, L. H. F., de Freitas, J. F., . . . Faroni, L. R. D. A. (2019). Use of ozone and detergent for removal of pesticides and improving storage quality of tomato.
Food Research International,
125, 108626.
https://doi.org/10.1016/j.foodres.2019.108626
Rodrigues, F. T., Marchioni, E., Lordel-Madeleine, S., Kuntz, F., Villavicencio, A. L. C. H., & Julien-David, D. (2020). Degradation of profenofos in aqueous solution and in vegetable sample by electron beam radiation.
Radiation physics and chemistry,
166, 108441.
https://doi.org/10.1016/j.radphyschem.2019.108441
Rouzegar, M. R., Abbaspour-Fard, M. H., Hedayatizadeh, M., & Mohamadinezhad, H. (2021). Comparison of drying kinetics of mint leaves by photovoltaic/thermal solar dryer and natural drying.
Journal of food science and technology (Iran),
18(119), 193-204.
https://doi.org/10.52547/fsct.18.119.193
Sabanci, S., Cevik, M., Cokgezme, O. F., Yildiz, H., & Icier, F. (2019). Quality characteristics of pomegranate juice concentrates produced by ohmic heating assisted vacuum evaporation.
Journal of the Science of Food and Agriculture,
99(5), 2589-2595.
https://doi.org/10.1002/jsfa.9474
Sain, M., Minz, P., John, H., & Singh, A. (2024). Effect of Ohmic Heating on Food Products: An In‐Depth Review Approach Associated with Quality Attributes.
Journal of Food Processing and Preservation,
2024(1), 2025937.
https://doi.org/10.1155/2024/2025937
San Martin, M., Barbosa-Cánovas, G., & Swanson, B. (2002). Food processing by high hydrostatic pressure.
Critical reviews in food science and nutrition,
42(6), 627-645.
https://doi.org/10.1080/20024091054274
Sánchez-Vega, R., Elez-Martínez, P., & Martín-Belloso, O. (2015). Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice.
Innovative Food Science & Emerging Technologies,
29, 70-77.
https://doi.org/10.1016/j.ifset.2014.12.002
Shojaei, M.-H., Jafarinaeimi, K., Mortezapour, H., Maharlooei, M.-M., & Asadi, M. (2023). Investigating the Effect of High Voltage Electric Field on the Pesticide Residue in Tomatoes Using the Thermal Imaging Technique.
Russian Journal of Nondestructive Testing,
59(10), 1074-1082.
https://doi.org/10.1134/S1061830923600521
Tanino, T., Hirosawa, M., Moteki, R., Matsui, M., & Ohshima, T. (2020). Engineering of pulsed electric field treatment using carbon materials as electrode and application to pasteurization of sake.
Journal of Electrostatics,
104, 103424.
https://doi.org/10.1016/j.elstat.2020.103424
Ucar, Y., Ceylan, Z., Durmus, M., Tomar, O., & Cetinkaya, T. (2021). Application of cold plasma technology in the food industry and its combination with other emerging technologies.
Trends in Food Science & Technology,
114, 355-371.
https://doi.org/10.1016/j.tifs.2021.06.004
Umair, M., Jabbar, S., Ayub, Z., Muhammad Aadil, R., Abid, M., Zhang, J., & Liqing, Z. (2022). Recent advances in plasma technology: Influence of atmospheric cold plasma on spore inactivation.
Food Reviews International,
38(1), 789-811.
https://doi.org/10.1080/87559129.2021.1888972
Van Wyk, S., Silva, F. V., & Farid, M. M. (2019). Pulsed electric field treatment of red wine: Inactivation of Brettanomyces and potential hazard caused by metal ion dissolution.
Innovative Food Science & Emerging Technologies,
52, 57-65.
https://doi.org/10.1016/j.ifset.2018.11.001
Vikram, V., Ramesh, M., & Prapulla, S. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods.
Journal of Food Engineering,
69(1), 31-40.
https://doi.org/10.1016/j.jfoodeng.2004.07.013
Wellman, N., Fortun, S. M., & McLeod, B. R. (1996). Bacterial biofilms and the bioelectric effect.
Antimicrobial agents and chemotherapy,
40(9), 2012-2014.
https://doi.org/10.1128/AAC.40.9.2012
Wibowo, S., Essel, E. A., De Man, S., Bernaert, N., Van Droogenbroeck, B., Grauwet, T., . . . Hendrickx, M. (2019). Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses.
Innovative Food Science & Emerging Technologies,
54, 64-77.
https://doi.org/10.1016/j.ifset.2019.03.004
Yang, N., Huang, K., Lyu, C., & Wang, J. (2016). Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: A review.
Food Control,
61, 28-38.
https://doi.org/10.1016/j.foodcont.2015.09.022
Yang, J., Pan, M., Han, R., Yang, X., Liu, X., Yuan, S., & Wang, S. (2024). Food irradiation: An emerging processing technology to improve the quality and safety of foods.
Food Reviews International,
40(8), 2321-2343.
https://doi.org/10.1080/87559129.2023.2272961
Yong, H. I., Kim, H.-J., Park, S., Kim, K., Choe, W., Yoo, S. J., & Jo, C. (2015). Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma.
Food Research International,
69, 57-63.
https://doi.org/10.1016/j.foodres.2014.12.008
Zell, M., Lyng, J., Morgan, D., & Cronin, D. (2011). Minimising heat losses during batch ohmic heating of solid food.
Food and Bioproducts Processing,
89(2), 128-134.
https://doi.org/10.1016/j.fbp.2010.04.003
Zhan, J., Zhang, A., Heroux, P., Guo, Y., Sun, Z., Li, Z., . . . Liu, Y. (2020). Remediation of perfluorooctanoic acid (PFOA) polluted soil using pulsed corona discharge plasma.
Journal of Hazardous Materials,
387, 121688.
https://doi.org/10.1016/j.jhazmat.2019.121688
Zhao, W., Yang, R., & Zhang, H. Q. (2012). Recent advances in the action of pulsed electric fields on enzymes and food component proteins.
Trends in Food Science & Technology,
27(2), 83-96.
https://doi.org/10.1016/j.tifs.2012.05.007
Zhou, R., Zhou, R., Yu, F., Xi, D., Wang, P., Li, J., . . . Ostrikov, K. K. (2018). Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma.
Chemical Engineering Journal,
342, 401-409.
https://doi.org/10.1016/j.cej.2018.02.107