Modeling and Analysis of a Tractor Diesel Engine Test Stand Structure Using the Finite Element Method

Document Type : Original Research

Authors

Department of Mechanical Engineering, Islamic Azad University, Shiraz Branch, Shiraz, Iran.

Abstract

The Diesel Engine Test Stand Structure (DETSS) is crucial in industries like automotive, agriculture, shipbuilding, military, and aerospace for engine testing and repair, ensuring safety for technicians. This study designed a steel structure in INVENTOR software, considering the engine's weight, power, and torque. Static and dynamic analyses were conducted using ABAQUS. Static analysis revealed maximum von Mises stress (300–617 MPa) in the motor mount and chassis and minimum stress (100–175 MPa) in the radiator mount, fuel tank, and control panel. Vibrational analysis showed maximum displacement (0.08 mm at 7.20 Hz) in the chassis and mounts, and minimum displacement (0.05 mm at 9.45 Hz) in the control panel, fuel tank, and battery holder. The findings highlight the need for reinforcement and optimization of the motor mount and engine holder.

Keywords


Altarazi, Y. S. M., Saadon, S., Yu, J., Gires, E., Ghafir, M. F. A., & Lucas, J. (2020). On-design operation and performance characteristic of custom engine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(1), 144-154. https://doi.org/10.37934/arfmts.70.1.144154
Bogdan, D., Marek, W., Jozinkiewicz, D., Zakrzewski, S., Kaczmarek, M., Binkowski, D., . . . Krzysztof, S. (2023). Research of dynamic phenomena in a model engine stand. Open Engineering, 13(1), 20220436. https://doi.org/10.1515/eng-2022-0436
Gholami, N., Afsari, A., Nazemosadat, S. M. R., & Afsari, M. J. (2023). Simulation and Dynamic-Thermal Analysis of Ceramic Disc and Brake Pad for Optimization by Finite Element Method. International Journal of Advanced Design & Manufacturing Technology, 16(4), 9-22. https://doi.org/10.30486/admt.2024.1980467.1402
Homayounfar, H., & Amiri Chayjan, R. (2022). Simulation of Mass and Heat Transfer of Orange Slice during Drying Process under Vacuum Condition Using Finite Element Method. Biomechanism and Bioenergy Research, 1(2), 51-55. https://doi.org/10.22103/BBR.2022.20484.1026
Khennane, A. (2013). Introduction to finite element analysis using MATLAB® and abaqus. CRC Press.
Lloyd, A. C., & Cackette, T. A. (2001). Diesel engines: environmental impact and control. Journal of the Air & Waste Management Association, 51(6), 809-847. https://doi.org/10.1080/10473289.2001.10464315
Nazemosadat, S. M. R., Ghanbarian, D., Naderi-Boldaji, M., & Nematollahi, M. A. (2022). Structural analysis of a mounted moldboard plow using the finite element simulation method. Spanish Journal of Agricultural Research, 20(2), e0204-e0204. https://doi.org/10.5424/sjar
Qi, Y., Liu, W., Liu, S., Wang, W., Peng, Y., & Wang, Z. (2023). A review on ammonia-hydrogen fueled internal combustion engines. ETransportation, 18, 100288. https://doi.org/10.1016/j.etran.2023.100288
Reitz, R. D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., . . . Bae, C. (2020). IJER editorial: The future of the internal combustion engine. In (Vol. 21, pp. 3-10): SAGE Publications Sage UK: London, England.
Voigt, K. U. (1991). A control scheme for a dynamical combustion engine test stand. International Conference on IEE Control, Edinburgh, UK.