Abdellatif, A. A., El Hamd, M. A., Salman, K. H., Abd-El-Rahim, A. M., El-Maghrabey, M., & Tawfeek, H. M. (2020). Integrative physicochemical and HPLC assessment studies for the inclusion of lornoxicam in buffalo's milk fat globules as a potential carrier delivery system for lipophilic drugs.
Microchemical Journal,
152, 104321.
https://doi.org/10.1016/j.microc.2019.104321
Ali, A. H., Wei, W., Khalifa, S. A., Zhang, X., & Wang, X. (2021). Effect of pasteurisation, homogenisation and freeze‐drying on bovine and buffalo milk fat triacylglycerols profile.
International Journal of Dairy Technology,
74(3), 472-488.
https://doi.org/10.1111/1471-0307.12781
Ali, F. (2022). Nonthermal and thermal treatments impact the structure and microstructure of milk fat globule membrane.
International Journal of Dairy Technology,
75(2), 338-347.
https://doi.org/10.1111/1471-0307.12840
Amsaraj, R., Ambade, N. D., & Mutturi, S. (2021). Variable selection coupled to PLS2, ANN and SVM for simultaneous detection of multiple adulterants in milk using spectral data.
International Dairy Journal,
123, 105172.
https://doi.org/10.1016/j.idairyj.2021.105172
Attallah, B., Serir, A., & Chahir, Y. (2019). Feature extraction in palmprint recognition using spiral of moment skewness and kurtosis algorithm.
Pattern Analysis and Applications,
22, 1197-1205.
https://doi.org/10.1007/s10044-018-0712-5
Azimi-Saghin, B., Omid, M., Rezvani, F., & Arefi, M. (2023). An Algorithm to Extract the Defective Areas of Potato Tubers Infected with Black Scab Disease Using Fuzzy C Means Clustering for Automatic Grading.
Biomechanism and Bioenergy Research,
2(1), 32-39.
https://doi.org/10.22103/bbr.2023.21783.1046
Berti, J., Grosso, N. R., Fernandez, H., Pramparo, M. C., & Gayol, M. F. (2018). Sensory quality of milk fat with low cholesterol content fractioned by molecular distillation.
Journal of the Science of Food and Agriculture,
98(9), 3478-3484.
https://doi.org/10.1002/jsfa.8866
Borin, A., Ferrão, M. F., Mello, C., Cordi, L., Pataca, L. C., Durán, N., & Poppi, R. J. (2007). Quantification of Lactobacillus in fermented milk by multivariate image analysis with least-squares support-vector machines.
Analytical and bioanalytical chemistry,
387, 1105-1112.
https://doi.org/10.1007/s00216-006-0971-7
Cereceda, D., Medel-Vera, C., Ortiz, M., & Tramon, J. (2022). Roughness and condition prediction models for airfield pavements using digital image processing.
Automation in Construction,
139, 104325.
https://doi.org/10.1016/j.autcon.2022.104325
Chaudhary, A., Thakur, R., Kolhe, S., & Kamal, R. (2020). A particle swarm optimization based ensemble for vegetable crop disease recognition.
Computers and Electronics in Agriculture,
178, 105747.
https://doi.org/10.1016/j.compag.2020.105747
Correa, K. d. P., Silva, M. E. T. d., Oliveira, D. R. B. d., Oliveira, A. F. d., Santos, I. J. B., Oliveira, E. B. d., & Coimbra, J. S. d. R. (2022). Influence of homogenization in the physicochemical quality of human milk and fat retention in gastric tubes.
Journal of Human Lactation,
38(2), 309-322.
https://doi.org/10.1177/08903344211031456
Dallago, G. M., de Figueiredo, D. M., de Resende Andrade, P. C., dos Santos, R. A., Lacroix, R., Santschi, D. E., & Lefebvre, D. M. (2019). Predicting first test day milk yield of dairy heifers.
Computers and Electronics in Agriculture,
166, 105032.
https://doi.org/10.1016/j.compag.2019.105032
Demir, B., Sayıncı, B., Çetin, N., Yaman, M., Çömlek, R., Aydın, Y., & Sutyemez, M. (2018). Elliptic Fourier based analysis and multivariate approaches for size and shape distinctions of walnut (Juglans regia L.) cultivars.
Grasas y Aceites,
69(4), e271-e271.
https://doi.org/10.3989/gya.0104181
Djaowé, G., Bitjoka, L., Boukar, O., Libouga, D. G., & Waldogo, B. (2013). Measurement of the rennet clotting time of milk by digital image sequences (2D+ t) processing.
Journal of Food Engineering,
114(2), 235-241.
https://doi.org/10.1016/j.jfoodeng.2012.07.024
Eid, S. M., El-Shamy, S., & Farag, M. A. (2022). Identification of milk quality and adulteration by surface-enhanced infrared absorption spectroscopy coupled to artificial neural networks using citrate-capped silver nanoislands.
Microchimica Acta,
189(8), 301.
https://doi.org/10.1007/s00604-022-05393-4
Ertugay, M. F., ŞENGÜL, M., & ŞENGÜL, M. (2004). Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turkish Journal of Veterinary & Animal Sciences, 28(2), 303-308.
Espejo-Carpio, F. J., Pérez-Gálvez, R., Guadix, A., & Guadix, E. M. (2018). Artificial neuronal networks (ANN) to model the hydrolysis of goat milk protein by subtilisin and trypsin.
Journal of Dairy Research,
85(3), 339-346.
https://doi.org/10.1017/S002202991800064X
Gallier, S., Gragson, D., Jiménez-Flores, R., & Everett, D. W. (2010). Surface characterization of bovine milk phospholipid monolayers by Langmuir isotherms and microscopic techniques.
Journal of agricultural and food chemistry,
58(23), 12275-12285.
https://doi.org/10.1021/jf102185a
Ghosh, A., Seth, S. K., & Purkayastha, P. (2018). Undulation induced tuning of electron acceptance by edge-oxidized graphene oxide.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,
204, 425-431.
https://doi.org/10.1016/j.saa.2018.06.052
Gui, H., Xiang, J., Xing, T., Liu, J., Chu, Z., He, X., & Liu, C. (2022). Boundary element method with particle swarm optimization for solving potential problems.
Advances in Engineering Software,
172, 103191.
https://doi.org/10.1016/j.advengsoft.2022.103191
Han, B., Zhang, L., & Zhou, P. (2022). Comparison of milk fat globule membrane protein profile among bovine, goat and camel milk based on label free proteomic techniques.
Food Research International,
162, 112097.
https://doi.org/10.1016/j.foodres.2022.112097
Hornberg, A. (2017). Handbook of machine and computer vision: the guide for developers and users. John Wiley & Sons.
Hosainpour, A., Kheiralipour, K., Nadimi, M., & Paliwal, J. (2022). Quality assessment of dried white mulberry (Morus alba L.) using machine vision.
Horticulturae,
8(11), 1011.
https://doi.org/10.3390/horticulturae8111011
Kheiralipour, K., Nadimi, M., & Paliwal, J. (2022). Development of an intelligent imaging system for ripeness determination of wild pistachios.
Sensors,
22(19), 7134.
https://doi.org/10.3390/s22197134
Kheiralipour, K., & Nargesi, M. H. (2024). Classification of wheat flour levels in powdered spices using visual imaging.
Journal of Agriculture and Food Research,
18, 101408.
https://doi.org/10.1016/j.jafr.2024.101408
Kumar, R., Rao, P. S., Rana, S. S., & Ghosh, P. (2020). Comparative performance analysis of enzyme inactivation of soy milk by using RSM and ANN.
Journal of Food Process Engineering,
43(11), e13530.
https://doi.org/10.1111/jfpe.13530
Kumar, V., Chakravarty, A., Magotra, A., Patil, C., & Shivahre, P. (2019). Comparative study of ANN and conventional methods in forecasting first lactation milk yield in Murrah buffalo.
Indian Journal of Animal Sciences,
89(11), 1262-1268.
https://doi.org/10.56093/ijans.v89i11.95887
Li, S., Yang, Y., Chen, C., Li, L., Valencak, T. G., & Ren, D. (2021). Differences in milk fat globule membrane proteins among Murrah, Nili-Ravi and Mediterranean buffaloes revealed by a TMT proteomic approach.
Food Research International,
139, 109847.
https://doi.org/10.1016/j.foodres.2020.109847
McCarthy, K., Lopetcharat, K., & Drake, M. (2017). Milk fat threshold determination and the effect of milk fat content on consumer preference for fluid milk.
Journal of Dairy Science,
100(3), 1702-1711.
https://doi.org/10.3168/jds.2016-11417
Milovanovic, B., Tomovic, V., Djekic, I., Miocinovic, J., Solowiej, B. G., Lorenzo, J. M., . . . Tomasevic, I. (2021). Colour assessment of milk and milk products using computer vision system and colorimeter.
International Dairy Journal,
120, 105084.
https://doi.org/10.1016/j.idairyj.2021.105084
Ming, J. L. K., Anuar, M. S., How, M. S., Noor, S. B. M., Abdullah, Z., & Taip, F. S. (2021). Development of an artificial neural network utilizing particle swarm optimization for modeling the spray drying of coconut milk.
Foods,
10(11), 2708.
https://doi.org/10.3390/foods10112708
Moate, P., Jacobs, J., Hannah, M., Morris, G., Beauchemin, K., Hess, P. A., . . . Wales, W. (2018). Adaptation responses in milk fat yield and methane emissions of dairy cows when wheat was included in their diet for 16 weeks.
Journal of Dairy Science,
101(8), 7117-7132.
https://doi.org/10.3168/jds.2017-14334
Mu, S., Stieger, M., & Boesveldt, S. (2022). Olfactory discrimination of fat content in milks is facilitated by differences in volatile compound composition rather than odor intensity.
Food Chemistry,
393, 133357.
https://doi.org/10.1016/j.foodchem.2022.133357
Nargesi, M. H., & Kheiralipour, K. (2024). Ability of visible imaging and machine learning in detection of chickpea flour adulterant in original cinnamon and pepper powders.
Heliyon,
10(16).
https://doi.org/10.1016/j.heliyon.2024.e35944
Phillips, L. G., Mcgiff, M. L., Barbano, D. M., & Lawless, H. T. (1995). The influence of fat on the sensory properties, viscosity, and color of lowfat milk.
Journal of Dairy Science,
78(6), 1258-1266.
https://doi.org/10.3168/jds.S0022-0302(95)76746-7
Pluschke, A., Gilbert, M., Williams, B., van den Borne, J., Schols, H., & Gerrits, W. (2016). The effect of replacing lactose by starch on protein and fat digestion in milk-fed veal calves.
animal,
10(8), 1296-1302.
https://doi.org/10.1017/S1751731116000252
Ragni, L., Iaccheri, E., Cevoli, C., & Berardinelli, A. (2016). Spectral-sensitive pulsed photometry to predict the fat content of commercialized milk.
Journal of Food Engineering,
171, 95-101.
https://doi.org/10.1016/j.jfoodeng.2015.10.017
Rajeshkumar, G., Kumar, M. V., Kumar, K. S., Bhatia, S., Mashat, A., & Dadheech, P. (2023). An Improved Multi-Objective Particle Swarm Optimization Routing on MANET.
Computer Systems Science & Engineering,
44(2), 1187-1200.
https://doi.org/10.32604/csse.2023.026137
Ramos, A. S., Fontes, C. H., Ferreira, A. M., Baccili, C. C., da Silva, K. N., Gomes, V., & de Melo, G. J. A. (2021). Somatic cell count in buffalo milk using fuzzy clustering and image processing techniques.
Journal of Dairy Research,
88(1), 69-72.
https://doi.org/10.1017/S0022029921000042
Rozycki, S. D., Buera, M. d. P., Piagentini, A., Costa, S. C., & Pauletti, M. (2010). Advances in the study of the kinetics of color and fluorescence development in concentrated milk systems.
Journal of Food Engineering,
101(1), 59-66.
https://doi.org/10.1016/j.jfoodeng.2010.06.009
Sacchi, R., Paduano, A., Caporaso, N., Picariello, G., Romano, R., & Addeo, F. (2018). Assessment of milk fat content in fat blends by 13C NMR spectroscopy analysis of butyrate.
Food Control,
91, 231-236.
https://doi.org/10.1016/j.foodcont.2018.04.011
Sharifi, F., Naderi-Boldaji, M., Ghasemi-Varnamkhasti, M., Kheiralipour, K., Ghasemi, M., & Maleki, A. (2023). Feasibility study of detecting some milk adulterations using a LED-based Vis-SWNIR photoacoustic spectroscopy system.
Food Chemistry,
424, 136411.
https://doi.org/10.1016/j.foodchem.2023.136411
Shi, Y., & Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546),
Abdellatif, A. A., El Hamd, M. A., Salman, K. H., Abd-El-Rahim, A. M., El-Maghrabey, M., & Tawfeek, H. M. (2020). Integrative physicochemical and HPLC assessment studies for the inclusion of lornoxicam in buffalo's milk fat globules as a potential carrier delivery system for lipophilic drugs.
Microchemical Journal,
152, 104321.
https://doi.org/10.1016/j.microc.2019.104321
Ali, A. H., Wei, W., Khalifa, S. A., Zhang, X., & Wang, X. (2021). Effect of pasteurisation, homogenisation and freeze‐drying on bovine and buffalo milk fat triacylglycerols profile.
International Journal of Dairy Technology,
74(3), 472-488.
https://doi.org/10.1111/1471-0307.12781
Ali, F. (2022). Nonthermal and thermal treatments impact the structure and microstructure of milk fat globule membrane.
International Journal of Dairy Technology,
75(2), 338-347.
https://doi.org/10.1111/1471-0307.12840
Amsaraj, R., Ambade, N. D., & Mutturi, S. (2021). Variable selection coupled to PLS2, ANN and SVM for simultaneous detection of multiple adulterants in milk using spectral data.
International Dairy Journal,
123, 105172.
https://doi.org/10.1016/j.idairyj.2021.105172
Attallah, B., Serir, A., & Chahir, Y. (2019). Feature extraction in palmprint recognition using spiral of moment skewness and kurtosis algorithm.
Pattern Analysis and Applications,
22, 1197-1205.
https://doi.org/10.1007/s10044-018-0712-5
Azimi-Saghin, B., Omid, M., Rezvani, F., & Arefi, M. (2023). An Algorithm to Extract the Defective Areas of Potato Tubers Infected with Black Scab Disease Using Fuzzy C Means Clustering for Automatic Grading.
Biomechanism and Bioenergy Research,
2(1), 32-39.
https://doi.org/10.22103/bbr.2023.21783.1046
Berti, J., Grosso, N. R., Fernandez, H., Pramparo, M. C., & Gayol, M. F. (2018). Sensory quality of milk fat with low cholesterol content fractioned by molecular distillation.
Journal of the Science of Food and Agriculture,
98(9), 3478-3484.
https://doi.org/10.1002/jsfa.8866
Borin, A., Ferrão, M. F., Mello, C., Cordi, L., Pataca, L. C., Durán, N., & Poppi, R. J. (2007). Quantification of Lactobacillus in fermented milk by multivariate image analysis with least-squares support-vector machines.
Analytical and bioanalytical chemistry,
387, 1105-1112.
https://doi.org/10.1007/s00216-006-0971-7
Cereceda, D., Medel-Vera, C., Ortiz, M., & Tramon, J. (2022). Roughness and condition prediction models for airfield pavements using digital image processing.
Automation in Construction,
139, 104325.
https://doi.org/10.1016/j.autcon.2022.104325
Chaudhary, A., Thakur, R., Kolhe, S., & Kamal, R. (2020). A particle swarm optimization based ensemble for vegetable crop disease recognition.
Computers and Electronics in Agriculture,
178, 105747.
https://doi.org/10.1016/j.compag.2020.105747
Correa, K. d. P., Silva, M. E. T. d., Oliveira, D. R. B. d., Oliveira, A. F. d., Santos, I. J. B., Oliveira, E. B. d., & Coimbra, J. S. d. R. (2022). Influence of homogenization in the physicochemical quality of human milk and fat retention in gastric tubes.
Journal of Human Lactation,
38(2), 309-322.
https://doi.org/10.1177/08903344211031456
Dallago, G. M., de Figueiredo, D. M., de Resende Andrade, P. C., dos Santos, R. A., Lacroix, R., Santschi, D. E., & Lefebvre, D. M. (2019). Predicting first test day milk yield of dairy heifers.
Computers and Electronics in Agriculture,
166, 105032.
https://doi.org/10.1016/j.compag.2019.105032
Demir, B., Sayıncı, B., Çetin, N., Yaman, M., Çömlek, R., Aydın, Y., & Sutyemez, M. (2018). Elliptic Fourier based analysis and multivariate approaches for size and shape distinctions of walnut (Juglans regia L.) cultivars.
Grasas y Aceites,
69(4), e271-e271.
https://doi.org/10.3989/gya.0104181
Djaowé, G., Bitjoka, L., Boukar, O., Libouga, D. G., & Waldogo, B. (2013). Measurement of the rennet clotting time of milk by digital image sequences (2D+ t) processing.
Journal of Food Engineering,
114(2), 235-241.
https://doi.org/10.1016/j.jfoodeng.2012.07.024
Eid, S. M., El-Shamy, S., & Farag, M. A. (2022). Identification of milk quality and adulteration by surface-enhanced infrared absorption spectroscopy coupled to artificial neural networks using citrate-capped silver nanoislands.
Microchimica Acta,
189(8), 301.
https://doi.org/10.1007/s00604-022-05393-4
Ertugay, M. F., ŞENGÜL, M., & ŞENGÜL, M. (2004). Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turkish Journal of Veterinary & Animal Sciences, 28(2), 303-308.
Espejo-Carpio, F. J., Pérez-Gálvez, R., Guadix, A., & Guadix, E. M. (2018). Artificial neuronal networks (ANN) to model the hydrolysis of goat milk protein by subtilisin and trypsin.
Journal of Dairy Research,
85(3), 339-346.
https://doi.org/10.1017/S002202991800064X
Gallier, S., Gragson, D., Jiménez-Flores, R., & Everett, D. W. (2010). Surface characterization of bovine milk phospholipid monolayers by Langmuir isotherms and microscopic techniques.
Journal of agricultural and food chemistry,
58(23), 12275-12285.
https://doi.org/10.1021/jf102185a
Ghosh, A., Seth, S. K., & Purkayastha, P. (2018). Undulation induced tuning of electron acceptance by edge-oxidized graphene oxide.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,
204, 425-431.
https://doi.org/10.1016/j.saa.2018.06.052
Gui, H., Xiang, J., Xing, T., Liu, J., Chu, Z., He, X., & Liu, C. (2022). Boundary element method with particle swarm optimization for solving potential problems.
Advances in Engineering Software,
172, 103191.
https://doi.org/10.1016/j.advengsoft.2022.103191
Han, B., Zhang, L., & Zhou, P. (2022). Comparison of milk fat globule membrane protein profile among bovine, goat and camel milk based on label free proteomic techniques.
Food Research International,
162, 112097.
https://doi.org/10.1016/j.foodres.2022.112097
Hornberg, A. (2017). Handbook of machine and computer vision: the guide for developers and users. John Wiley & Sons.
Hosainpour, A., Kheiralipour, K., Nadimi, M., & Paliwal, J. (2022). Quality assessment of dried white mulberry (Morus alba L.) using machine vision.
Horticulturae,
8(11), 1011.
https://doi.org/10.3390/horticulturae8111011
Kheiralipour, K., Nadimi, M., & Paliwal, J. (2022). Development of an intelligent imaging system for ripeness determination of wild pistachios.
Sensors,
22(19), 7134.
https://doi.org/10.3390/s22197134
Kheiralipour, K., & Nargesi, M. H. (2024). Classification of wheat flour levels in powdered spices using visual imaging.
Journal of Agriculture and Food Research,
18, 101408.
https://doi.org/10.1016/j.jafr.2024.101408
Kumar, R., Rao, P. S., Rana, S. S., & Ghosh, P. (2020). Comparative performance analysis of enzyme inactivation of soy milk by using RSM and ANN.
Journal of Food Process Engineering,
43(11), e13530.
https://doi.org/10.1111/jfpe.13530
Kumar, V., Chakravarty, A., Magotra, A., Patil, C., & Shivahre, P. (2019). Comparative study of ANN and conventional methods in forecasting first lactation milk yield in Murrah buffalo.
Indian Journal of Animal Sciences,
89(11), 1262-1268.
https://doi.org/10.56093/ijans.v89i11.95887
Li, S., Yang, Y., Chen, C., Li, L., Valencak, T. G., & Ren, D. (2021). Differences in milk fat globule membrane proteins among Murrah, Nili-Ravi and Mediterranean buffaloes revealed by a TMT proteomic approach.
Food Research International,
139, 109847.
https://doi.org/10.1016/j.foodres.2020.109847
McCarthy, K., Lopetcharat, K., & Drake, M. (2017). Milk fat threshold determination and the effect of milk fat content on consumer preference for fluid milk.
Journal of Dairy Science,
100(3), 1702-1711.
https://doi.org/10.3168/jds.2016-11417
Milovanovic, B., Tomovic, V., Djekic, I., Miocinovic, J., Solowiej, B. G., Lorenzo, J. M., . . . Tomasevic, I. (2021). Colour assessment of milk and milk products using computer vision system and colorimeter.
International Dairy Journal,
120, 105084.
https://doi.org/10.1016/j.idairyj.2021.105084
Ming, J. L. K., Anuar, M. S., How, M. S., Noor, S. B. M., Abdullah, Z., & Taip, F. S. (2021). Development of an artificial neural network utilizing particle swarm optimization for modeling the spray drying of coconut milk.
Foods,
10(11), 2708.
https://doi.org/10.3390/foods10112708
Moate, P., Jacobs, J., Hannah, M., Morris, G., Beauchemin, K., Hess, P. A., . . . Wales, W. (2018). Adaptation responses in milk fat yield and methane emissions of dairy cows when wheat was included in their diet for 16 weeks.
Journal of Dairy Science,
101(8), 7117-7132.
https://doi.org/10.3168/jds.2017-14334
Mu, S., Stieger, M., & Boesveldt, S. (2022). Olfactory discrimination of fat content in milks is facilitated by differences in volatile compound composition rather than odor intensity.
Food Chemistry,
393, 133357.
https://doi.org/10.1016/j.foodchem.2022.133357
Nargesi, M. H., & Kheiralipour, K. (2024). Ability of visible imaging and machine learning in detection of chickpea flour adulterant in original cinnamon and pepper powders.
Heliyon,
10(16).
https://doi.org/10.1016/j.heliyon.2024.e35944
Phillips, L. G., Mcgiff, M. L., Barbano, D. M., & Lawless, H. T. (1995). The influence of fat on the sensory properties, viscosity, and color of lowfat milk.
Journal of Dairy Science,
78(6), 1258-1266.
https://doi.org/10.3168/jds.S0022-0302(95)76746-7
Pluschke, A., Gilbert, M., Williams, B., van den Borne, J., Schols, H., & Gerrits, W. (2016). The effect of replacing lactose by starch on protein and fat digestion in milk-fed veal calves.
animal,
10(8), 1296-1302.
https://doi.org/10.1017/S1751731116000252
Ragni, L., Iaccheri, E., Cevoli, C., & Berardinelli, A. (2016). Spectral-sensitive pulsed photometry to predict the fat content of commercialized milk.
Journal of Food Engineering,
171, 95-101.
https://doi.org/10.1016/j.jfoodeng.2015.10.017
Rajeshkumar, G., Kumar, M. V., Kumar, K. S., Bhatia, S., Mashat, A., & Dadheech, P. (2023). An Improved Multi-Objective Particle Swarm Optimization Routing on MANET.
Computer Systems Science & Engineering,
44(2), 1187-1200.
https://doi.org/10.32604/csse.2023.026137
Ramos, A. S., Fontes, C. H., Ferreira, A. M., Baccili, C. C., da Silva, K. N., Gomes, V., & de Melo, G. J. A. (2021). Somatic cell count in buffalo milk using fuzzy clustering and image processing techniques.
Journal of Dairy Research,
88(1), 69-72.
https://doi.org/10.1017/S0022029921000042
Rozycki, S. D., Buera, M. d. P., Piagentini, A., Costa, S. C., & Pauletti, M. (2010). Advances in the study of the kinetics of color and fluorescence development in concentrated milk systems.
Journal of Food Engineering,
101(1), 59-66.
https://doi.org/10.1016/j.jfoodeng.2010.06.009
Sacchi, R., Paduano, A., Caporaso, N., Picariello, G., Romano, R., & Addeo, F. (2018). Assessment of milk fat content in fat blends by 13C NMR spectroscopy analysis of butyrate.
Food Control,
91, 231-236.
https://doi.org/10.1016/j.foodcont.2018.04.011
Sharifi, F., Naderi-Boldaji, M., Ghasemi-Varnamkhasti, M., Kheiralipour, K., Ghasemi, M., & Maleki, A. (2023). Feasibility study of detecting some milk adulterations using a LED-based Vis-SWNIR photoacoustic spectroscopy system.
Food Chemistry,
424, 136411.
https://doi.org/10.1016/j.foodchem.2023.136411
Shi, Y., & Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546),
Soukoulis, C., Lyroni, E., & Tzia, C. (2010). Sensory profiling and hedonic judgement of probiotic ice cream as a function of hydrocolloids, yogurt and milk fat content.
LWT-Food Science and Technology,
43(9), 1351-1358.
https://doi.org/10.1016/j.lwt.2010.05.006
Wu, S., Zhang, H., Jin, Y., Yang, N., Xu, X., & Xie, Z. (2021). Assessment of milk fat based on signal-to-ground voltage.
Journal of Food Measurement and Characterization,
15, 1385-1394.
https://doi.org/10.1007/s11694-020-00733-5
Xu, W., Bai, J., Peng, J., Samanta, A., & Chang, Y.-T. (2014). Milk quality control: instant and quantitative milk fat determination with a BODIPY sensor-based fluorescence detector.
Chemical Communications,
50(72), 10398-10401.
https://doi.org/10.1039/x0xx00000x
Yao, Y., Zhao, G., Yan, Y., Mu, H., Jin, Q., Zou, X., & Wang, X. (2016). Milk fat globules by confocal Raman microscopy: Differences in human, bovine and caprine milk.
Food Research International,
80, 61-69.
https://doi.org/10.1016/j.foodres.2015.12.017
Żywica, R., Banach, J. K., & Kiełczewska, K. (2012). An attempt of applying the electrical properties for the evaluation of milk fat content of raw milk.
Journal of Food Engineering,
111(2), 420-424.
https://doi.org/10.1016/j.jfoodeng.2012.01.025