Application of the Box-Behnken Design for Optimizing Biodiesel Output from Castor Oil: Analysis and Characterization

Document Type : Original Research

Authors

1 Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.

2 Department of Mechanical Engineering, Tarbiat Modares University, Jalal ale Ahmad highway, Tehran, Iran.

3 College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.

4 Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.

Abstract

This study specifically examines the process of producing and analyzing biodiesel made from castor oil using base-catalyzed transesterification. The catalyst used in this process is potassium hydroxide (KOH), and the methanol (CH₃OH) used has a purity of 99.9%. The biodiesel obtained was analyzed extensively to assess its quality. The characterization techniques employed were Gas Chromatography (GC) for compositional analysis, Flash Point measurement for safety assessment, Kinematic Viscosity evaluation for flow properties, and Density determination for mass-volume relationships. To perform a statistical analysis, the Response Surface Method (RSM) was employed to determine the optimal conditions that would yield the highest rate of biodiesel production among the potential solutions. This study focused on three key variables affecting the transesterification process: ultrasonic duty cycle (using a 24 kHz ultrasonic method varying the duty cycle from 20% to 100%), ultrasonic amplitude (varying from 20% to 100%), and reaction time (spanning from 10 to 15 minutes). This investigation achieved a biodiesel yield of 88.38% using a 60% ultrasonic amplitude, a single ultrasonic cycle, and a 15-minute reaction time. The regression model developed can be used to predict biodiesel's percentage conversion.

Keywords


A Shirazi, M. J., Bazgir, S., & A Shirazi, M. M. (2014). Edible oil mill effluent; a low-cost source for economizing biodiesel production: Electrospun nanofibrous coalescing filtration approach. Biofuel Research Journal, 1(1), 39-42. https://doi.org/https://doi.org/10.18331/BRJ2015.1.1.9
Abbaspour Aghdam, F., Kiani Manesh, H. R., Arabian, D., & Khalilzadeh, R. (2018). Design and Integration for Biodiesel Production from Vegetable Oil via Transesterification Reaction. .Journal of Agricultural Machinery, 8(1), 223-234. https://doi.org/https://doi.org/10.22067/JAM.V8I1.34257
Akia, M., Yazdani, F., Motaee, E., Han, D., & Arandiyan, H. (2014). A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Research Journal, 1(1), 16-25. https://doi.org/https://doi.org/10.18331/BRJ2015.1.1.5
Ataei, S. A., Tavakoli Moghadam, F., & Namjo, A. (2022). Investigating the Effects of Some Operating Parameters Affecting Biodiesel Production from Used Vegetable Oil. Biomechanism and Bioenergy Research, 1(2), 65-68. https://doi.org/https://doi.org/10.22103/BBR.2022.20528.1029
Beetul, K., Bibi Sadally, S., Taleb-Hossenkhan, N., Bhagooli, R., & Puchooa, D. (2014). An investigation of biodiesel production from microalgae found in Mauritian waters. Biofuel Research Journal, 1(2), 58-64. https://doi.org/https://doi.org/10.18331/BRJ2015.1.2.5
Choedkiatsakul, I., Ngaosuwan, K., Cravotto, G., & Assabumrungrat, S. (2014). Biodiesel production from palm oil using combined mechanical stirred and ultrasonic reactor. Ultrasonics sonochemistry, 21(4), 1585-1591. https://doi.org/https://doi.org/10.1016/j.ultsonch.2013.12.025
Chuah, L. F., Bokhari, A., Yusup, S., Klemeš, J. J., Abdullah, B., & Akbar, M. M. (2016). Optimisation and kinetic studies of acid esterification of high free fatty acid rubber seed oil. Arabian Journal for Science and Engineering, 41, 2515-2526.
Chuah, L. F., Klemeš, J. J., Bokhari, A., Asif, S., Cheng, Y. W., Chong, C. C., & Show, P. L. (2022). Chapter 3 - A review of intensification technologies for biodiesel production. In C. Gutiérrez-Antoni & F. I. Gómez Castro (Eds.), Biofuels and Biorefining (pp. 87-116). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-824117-2.00009-0
Conceicao, M. M., Candeia, R. A., Silva, F. C., Bezerra, A. F., Fernandes Jr, V. J., & Souza, A. G. (2007). Thermoanalytical characterization of castor oil biodiesel. Renewable and Sustainable Energy Reviews, 11(5), 964-975. https://doi.org/https://doi.org/10.1016/j.rser.2005.10.001
Das, S., & Mishra, S. (2017). Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach. Journal of Environmental Chemical Engineering, 5(1), 588-600. https://doi.org/https://doi.org/10.1016/j.jece.2016.12.034
Encinar, J., González, J., & Pardal, A. (2012). Transesterification of castor oil under ultrasonic irradiation conditions. Preliminary results. Fuel processing technology, 103, 9-15. https://doi.org/https://doi.org/10.1016/j.fuproc.2011.12.033
Gerpen, J. V., Shanks, B., Pruszko, R., Clements, D., & Knothe, G. (2004). Biodiesel production technology. National Renewable Energy Laboratory, 1617, 80401-83393.
Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60-72. https://doi.org/https://doi.org/10.1016/j.bej.2008.10.006
Gole, V. L., & Gogate, P. R. (2012a). Intensification of synthesis of biodiesel from nonedible oils using sonochemical reactors. Industrial & engineering chemistry research, 51(37), 11866-11874. https://doi.org/https://doi.org/10.1021/ie2029442
Gole, V. L., & Gogate, P. R. (2012b). A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chemical Engineering and Processing: Process Intensification, 53, 1-9. https://doi.org/https://doi.org/10.1016/j.cep.2011.12.008
Gui, M. M., Lee, K. T., & Bhatia, S. (2008). Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 33(11), 1646-1653. https://doi.org/https://doi.org/10.1016/j.energy.2008.06.002
Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of sciences, 103(30), 11206-11210. https://doi.org/https://doi.org/10.1073/pnas.0604600103
Hossain, A., Boyce, A., Salleh, A., & Chandran, S. (2010). Impacts of alcohol type, ratio and stirring time on the biodiesel production from waste canola oil. African Journal of Agricultural Research, 5(14), 1851-1859. http://eprints.um.edu.my/id/eprint/7762
Issariyakul, T., & Dalai, A. K. (2014). Biodiesel from vegetable oils. Renewable and Sustainable Energy Reviews, 31, 446-471. https://doi.org/https://doi.org/10.1016/j.rser.2013.11.001
Kılıç, M., Uzun, B. B., Pütün, E., & Pütün, A. E. (2013). Optimization of biodiesel production from castor oil using factorial design. Fuel processing technology, 111, 105-110. https://doi.org/https://doi.org/10.1016/j.fuproc.2012.05.032
Krohn, B. J., McNeff, C. V., Yan, B., & Nowlan, D. (2011). Production of algae-based biodiesel using the continuous catalytic Mcgyan® process. Bioresource technology, 102(1), 94-100. https://doi.org/https://doi.org/10.1016/j.biortech.2010.05.035
Manaf, I. S. A., Embong, N. H., Khazaai, S. N. M., Rahim, M. H. A., Yusoff, M. M., Lee, K. T., & Maniam, G. P. (2019). A review for key challenges of the development of biodiesel industry. Energy Conversion and Management, 185, 508-517. https://doi.org/https://doi.org/10.1016/j.enconman.2019.02.019
Martín, C., Moure, A., Martín, G., Carrillo, E., Domínguez, H., & Parajó, J. C. (2010). Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and bioenergy, 34(4), 533-538. https://doi.org/https://doi.org/10.1016/j.biombioe.2009.12.019
Micic, R. D., Tomić, M. D., Kiss, F. E., Nikolić-Djorić, E. B., & Simikić, M. Ð. (2014). Influence of reaction conditions and type of alcohol on biodiesel yields and process economics of supercritical transesterification. Energy conversion and management, 86, 717-726. https://doi.org/https://doi.org/10.1016/j.enconman.2014.06.052
Moser, B. R. (2009). Biodiesel production, properties, and feedstocks. In Vitro Cellular & Developmental Biology-Plant, 45, 229-266. https://doi.org/https://doi.org/10.1007/978-1-4419-7145-6
Pal, A., & Kachhwaha, S. S. (2013). Biodiesel production of waste cooking oil through ultrasound cavitation. International Journal of Engineering Research and Technology, 6(3), 291-306.
Rajaeifar, M. A., Ghobadian, B., Davoud Heidari, M., & Fayyazi, E. (2013). Energy consumption and greenhouse gas emissions of biodiesel production from rapeseed in Iran. Journal of Renewable and Sustainable Energy, 5(6).
Rajaeifar, M. A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B., & Rafiee, S. (2015). Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews, 51, 886-898. https://doi.org/https://doi.org/10.1016/j.rser.2015.06.037
Ramachandran, K., Suganya, T., Gandhi, N. N., & Renganathan, S. (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: a review. Renewable and Sustainable Energy Reviews, 22, 410-418. https://doi.org/https://doi.org/10.1016/j.rser.2013.01.057
Sáez-Bastante, J., Pinzi, S., Jiménez-Romero, F. J., Luque de Castro, M. D., Priego-Capote, F., & Dorado, M. P. (2015). Synthesis of biodiesel from castor oil: Silent versus sonicated methylation and energy studies. Energy Conversion and Management, 96, 561-567. https://doi.org/https://doi.org/10.1016/j.enconman.2015.03.019
Siaw, W. C., Tan, L. S., Kiew, P. L., Tsuji, T., & Murshid, G. (2023). Synthesis of Biodiesel from Palm Oil Using a Hybrid Mechanical Stirring and High Frequency Ultrasonic-Assisted Enzyme-Catalysed Process. Chemical Engineering Transactions, 106, 1057-1062.
Stavarache, C., Vinatoru, M., & Maeda, Y. (2007). Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrasonics sonochemistry, 14(3), 380-386. https://doi.org/https://doi.org/10.1016/j.ultsonch.2006.08.004
Supriyadi, S., & Purwanto, P. (2018). Enhancing biodiesel from kemiri sunan oil manufacturing using ultrasonics. E3S Web of Conferences,
Talkit, K. M., Mahajan, D., & Masand, V. (2012). Study on physicochemical properties of vegetable oils and their blends use as possible ecological lubricant.
Tamandani, M., & Hashemi, S. H. (2022). Central Composite Design (CCD) and Box-Behnken Design (BBD) for the Optimization of a Molecularly Imprinted Polymer (MIP) Based Pipette Tip Micro-Solid Phase Extraction (SPE) for the Spectrophotometric Determination of Chlorpyrifos in Food and Juice. Analytical Letters, 55(15), 2394-2408. https://doi.org/10.1080/00032719.2022.2056192
Valente, O. S., Pasa, V. M. D., Belchior, C. R. P., & Sodré, J. R. (2011). Physical–chemical properties of waste cooking oil biodiesel and castor oil biodiesel blends. Fuel, 90(4), 1700-1702. https://doi.org/https://doi.org/10.1016/j.fuel.2010.10.045
Vicente, G., Martinez, M., & Aracil, J. (2007). Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresource technology, 98(9), 1724-1733. https://doi.org/https://doi.org/10.1016/j.biortech.2006.07.024