Akbari, J., Borzoie, H., & Mamduhi, M. H. (2008). Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3). International Journal of Mechanical and Mechatronics Engineering, 2(5), 722-726.
Asfaram, A., Sadeghi, H., Goudarzi, A., Kokhdan, E. P., & Salehpour, Z. (2019). Ultrasound combined with manganese-oxide nanoparticles loaded on activated carbon for extraction and pre-concentration of thymol and carvacrol in methanolic extracts of
Thymus daenensis, Salvia officinalis, Stachys pilifera, Satureja khuzistanica, and mentha, and water samples.
Analyst,
144(6), 1923-1934.
https://doi.org/10.1039/C8AN02338G
Branisa, J., Jomova, K., Porubska, M., Kollar, V., Simunkova, M., & Valko, M. (2017). Effect of drying methods on the content of natural pigments and antioxidant capacity in extracts from medicinal plants: a spectroscopic study.
Chemical Papers,
71, 1993-2002.
https://doi.org/10.1007/s11696-017-0193-9
Cárcel, J., García-Pérez, J., Riera, E., & Mulet, A. (2007). Influence of high-intensity ultrasound on drying kinetics of persimmon.
Drying Technology,
25(1), 185-193.
https://doi.org/10.1080/07373930601161070
Chhabra, A. D., Vinod Kumar, R., Vundavilli, P. R., & Surekha, B. (2016). Design and analysis of higher order exponential horn profiles for ultrasonic machining.
Journal for Manufacturing Science and Production,
16(1), 13-19.
https://doi.org/10.1515/jmsp-2015-0012
Gamboa-Santos, J., Montilla, A., Soria, A. C., Cárcel, J. A., García-Pérez, J. V., & Villamiel, M. (2014). Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection.
Food Chemistry,
161, 40-46.
https://doi.org/10.1016/j.foodchem.2014.03.106
Gang, J.-P. (1991). A Study on the Design of ultrasonic Vibration Cutting Tool horn. Journal of the Korean Society for Precision Engineering, 8(3), 55-63.
Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying.
Food and Bioprocess Technology,
5(6), 2256-2265.
https://doi.org/10.1007/s11947-011-0645-0
Huang, D., Men, K., Li, D., Wen, T., Gong, Z., Sunden, B., & Wu, Z. (2020). Application of ultrasound technology in the drying of food products.
Ultrasonics Sonochemistry,
63, 104950.
https://doi.org/10.1016/j.ultsonch.2019.104950
Huang, Y.-C., Ding, G.-Z., Chen, B.-H., & Huang, Y.-J. (2013). Simulation and experiment of Langevin-type piezoelectric ultrasonic horn for micro tool motion.
Intelligent technologies and engineering systems, (pp. 967-974). Springer New York.
https://doi.org/10.1007/978-1-4614-6747-2_112
Kumar, S., Ding, W., Sun, Z., & Wu, C. (2018). Analysis of the dynamic performance of a complex ultrasonic horn for application in friction stir welding.
The International Journal of Advanced Manufacturing Technology,
97, 1269-1284.
https://doi.org/10.1007/s00170-018-2003-0
Mahanom, H., Azizah, A., & Dzulkifly, M. (1999). Effect of different drying methods on concentrations of several phytochemicals in herbal preparation of 8 medicinal plants leaves. Malaysian Journal of Science, 5(1 & 2), 47-54.
Moon, H., Park, B., Kim, S., & Lee, C. (2003). The Polishing Characteristics and Development of Ultrasonic Polishing System. Proceedings of the KSME Conference,
Naď, M. (2010). Ultrasonic horn design for ultrasonic machining technologies. Applied and Computational Mechanics, 4(1), 79-88.
Namjoo, M., Moradi, M., Dibagar, N., & Niakousari, M. (2022). Cold plasma pretreatment prior to ultrasound-assisted air drying of cumin seeds.
Food and Bioprocess Technology,
15(9), 2065-2083.
https://doi.org/10.1007/s11947-022-02863-8
Namjoo, M., Moradi, M., Dibagar, N., Taghvaei, M., & Niakousari, M. (2022). Effect of green technologies of cold plasma and airborne ultrasound wave on the germination and growth indices of cumin (Cuminum cyminum L.) seeds.
Journal of Food Process Engineering, e14166.
https://doi.org/10.1111/jfpe.14166
Namjoo, M., Moradi, M., & Niakousari, M. (2022). Evaluation of the effect of high-power ultrasound waves on conventional air drying of cumin seeds.
Sustainable Energy Technologies and Assessments,
52, 102262.
https://doi.org/10.1016/j.seta.2022.102262
Namjoo, M., Moradi, M., Niakousari, M., & Karparvarfard, S. H. (2022). Ultrasound-assisted air drying of cumin seeds: modeling and optimization by response surface method.
Heat and Mass Transfer, 1-19.
https://doi.org/10.1007/s00231-022-03306-y
Rani, M. R., & Rudramoorthy, R. (2013). Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding.
Ultrasonics,
53(3), 763-772.
https://doi.org/10.1016/j.ultras.2012.11.003
Rao, R. V., & Kalyankar, V. (2014). Optimization of modern machining processes using advanced optimization techniques: a review.
The International Journal of Advanced Manufacturing Technology,
73, 1159-1188.
https://doi.org/10.1007/s00170-014-5894-4
Shi, X.-F., Chu, J.-Z., Zhang, Y.-F., Liu, C.-Q., & Yao, X.-Q. (2017). Nutritional and active ingredients of medicinal chrysanthemum flower heads affected by different drying methods.
Industrial crops and products,
104, 45-51.
https://doi.org/10.1016/j.indcrop.2017.04.021