The Modal and Harmonic Analysis of a Cylindrical Horn Designed for an Airborne Ultrasonic Dryer

Document Type : Original Research

Authors

1 Department of Mechanical Engineering, University of Jiroft, Jiroft, Iran.

2 Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.

Abstract

The extensive radiating surface of horn is an imperative part for amplifying the ultrasonic airborne waves generated for drying of foodstuffs. However, the radiation of high-intensity waves may lead to frequency shift, interaction of modes and reduced efficiency of ultrasonic system. Furthermore, the excitations may also be harmful to the transducer, horn and the joints. In this study, a finite element model is developed for the dynamic analysis of a cylindrical horn. In the modal analysis, the natural frequency of horn is found to be 19,498 Hz which is very close to the working frequency of the ultrasonic generator i.e., 20 kHz. At this frequency, the amplitude of non-beneficial longitudinal mode is negligible compared with that in main radial mode shape and there is no risk for interaction of modes. According to the harmonic analysis, the generated von Mises stresses in the horn are much lower than the endurance limit of constructing material and the horn can safely radiates the waves. The experimental data measured by a laser vibrometer are also used for validating the results of numerical simulation.

Keywords


Akbari, J., Borzoie, H., & Mamduhi, M. H. (2008). Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3). International Journal of Mechanical and Mechatronics Engineering, 2(5), 722-726.
Asfaram, A., Sadeghi, H., Goudarzi, A., Kokhdan, E. P., & Salehpour, Z. (2019). Ultrasound combined with manganese-oxide nanoparticles loaded on activated carbon for extraction and pre-concentration of thymol and carvacrol in methanolic extracts of Thymus daenensis, Salvia officinalis, Stachys pilifera, Satureja khuzistanica, and mentha, and water samples. Analyst, 144(6), 1923-1934. https://doi.org/10.1039/C8AN02338G
Bantle, M., & Eikevik, T. M. (2011). Parametric study of high-intensity ultrasound in the atmospheric freeze drying of peas. Drying Technology, 29(10), 1230-1239. https://doi.org/10.1080/07373937.2011.584256
Bantle, M., & Hanssler, J. (2013). Ultrasonic convective drying kinetics of clipfish during the initial drying period. Drying Technology, 31(11), 1307-1316. https://doi.org/10.1080/07373937.2013.792093
Branisa, J., Jomova, K., Porubska, M., Kollar, V., Simunkova, M., & Valko, M. (2017). Effect of drying methods on the content of natural pigments and antioxidant capacity in extracts from medicinal plants: a spectroscopic study. Chemical Papers, 71, 1993-2002. https://doi.org/10.1007/s11696-017-0193-9
Cárcel, J., García-Pérez, J., Riera, E., & Mulet, A. (2007). Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1), 185-193. https://doi.org/10.1080/07373930601161070
Cardoni, A., & Lucas, M. (2002). Enhanced vibration performance of ultrasonic block horns. Ultrasonics, 40(1-8), 365-369. https://doi.org/10.1016/S0041-624X(02)00123-3
Chhabra, A. D., Vinod Kumar, R., Vundavilli, P. R., & Surekha, B. (2016). Design and analysis of higher order exponential horn profiles for ultrasonic machining. Journal for Manufacturing Science and Production, 16(1), 13-19. https://doi.org/10.1515/jmsp-2015-0012
Cretu, N. (2005). Acoustic measurements and computational results on material specimens with harmonic variation of the cross section. Ultrasonics, 43(7), 547-550. https://doi.org/10.1016/j.ultras.2004.12.004
El-Hofy, H. (2018). Fundamentals of machining processes: conventional and nonconventional processes (3rd Edition ed.). CRC press. https://doi.org/https://doi.org/10.1201/9780429443329
Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: recent developments and prospective advances. Physics Procedia, 3(1), 35-47. https://doi.org/10.1016/j.phpro.2010.01.006
Gamboa-Santos, J., Montilla, A., Soria, A. C., Cárcel, J. A., García-Pérez, J. V., & Villamiel, M. (2014). Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chemistry, 161, 40-46. https://doi.org/10.1016/j.foodchem.2014.03.106
Gang, J.-P. (1991). A Study on the Design of ultrasonic Vibration Cutting Tool horn. Journal of the Korean Society for Precision Engineering, 8(3), 55-63.
García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Riera-Franco de Sarabia, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed: Parametric study. Ultrasonics, 44, e539-e543. https://doi.org/https://doi.org/10.1016/j.ultras.2006.06.059
Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256-2265. https://doi.org/10.1007/s11947-011-0645-0
Ghanbarian, D., Torki-Harchegani, M., Sadeghi, M., & Pirbalouti, A. G. (2020). Ultrasonically improved convective drying of peppermint leaves: Influence on the process time and energetic indices. Renewable energy, 153, 67-73. https://doi.org/https://doi.org/10.1016/j.renene.2019.10.024
Huang, D., Men, K., Li, D., Wen, T., Gong, Z., Sunden, B., & Wu, Z. (2020). Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 63, 104950. https://doi.org/10.1016/j.ultsonch.2019.104950
Huang, Y.-C., Ding, G.-Z., Chen, B.-H., & Huang, Y.-J. (2013). Simulation and experiment of Langevin-type piezoelectric ultrasonic horn for micro tool motion. Intelligent technologies and engineering systems, (pp. 967-974). Springer New York. https://doi.org/10.1007/978-1-4614-6747-2_112
Khaloahmadi, A., Roostapoor, O.-R., & Farzaneh, B. (2023). Drying Food Waste Using a Conventional Tray Cabinet Dryer. Biomechanism and Bioenergy Research, 2(2), 1-9. https://doi.org/ https://doi.org/10.22103/BBR.2023.21951.1053
Kumar, S. (2016). Ultrasonic assisted friction stir processing of 6063 aluminum alloy. Archives of Civil and Mechanical Engineering, 16, 473-484. https://doi.org/10.1016/j.acme.2016.03.002
Kumar, S., Ding, W., Sun, Z., & Wu, C. (2018). Analysis of the dynamic performance of a complex ultrasonic horn for application in friction stir welding. The International Journal of Advanced Manufacturing Technology, 97, 1269-1284. https://doi.org/10.1007/s00170-018-2003-0
Mahanom, H., Azizah, A., & Dzulkifly, M. (1999). Effect of different drying methods on concentrations of several phytochemicals in herbal preparation of 8 medicinal plants leaves. Malaysian Journal of Science, 5(1 & 2), 47-54.
Moon, H., Park, B., Kim, S., & Lee, C. (2003). The Polishing Characteristics and Development of Ultrasonic Polishing System. Proceedings of the KSME Conference,
Naď, M. (2010). Ultrasonic horn design for ultrasonic machining technologies. Applied and Computational Mechanics, 4(1), 79-88.
Namjoo, M., Moradi, M., Dibagar, N., & Niakousari, M. (2022). Cold plasma pretreatment prior to ultrasound-assisted air drying of cumin seeds. Food and Bioprocess Technology, 15(9), 2065-2083. https://doi.org/10.1007/s11947-022-02863-8
Namjoo, M., Moradi, M., Dibagar, N., Taghvaei, M., & Niakousari, M. (2022). Effect of green technologies of cold plasma and airborne ultrasound wave on the germination and growth indices of cumin (Cuminum cyminum L.) seeds. Journal of Food Process Engineering, e14166. https://doi.org/10.1111/jfpe.14166
Namjoo, M., Moradi, M., & Niakousari, M. (2022). Evaluation of the effect of high-power ultrasound waves on conventional air drying of cumin seeds. Sustainable Energy Technologies and Assessments, 52, 102262. https://doi.org/10.1016/j.seta.2022.102262
Namjoo, M., Moradi, M., Niakousari, M., & Karparvarfard, S. H. (2022). Ultrasound-assisted air drying of cumin seeds: modeling and optimization by response surface method. Heat and Mass Transfer, 1-19. https://doi.org/10.1007/s00231-022-03306-y
Rani, M. R., & Rudramoorthy, R. (2013). Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding. Ultrasonics, 53(3), 763-772. https://doi.org/10.1016/j.ultras.2012.11.003
Rao, R. V., & Kalyankar, V. (2014). Optimization of modern machining processes using advanced optimization techniques: a review. The International Journal of Advanced Manufacturing Technology, 73, 1159-1188. https://doi.org/10.1007/s00170-014-5894-4
Seah, K., Wong, Y., & Lee, L. (1993). Design of tool holders for ultrasonic machining using FEM. Journal of Materials Processing Technology, 37(1-4), 801-816. https://doi.org/10.1016/0924-0136(93)90138-V
Shi, X.-F., Chu, J.-Z., Zhang, Y.-F., Liu, C.-Q., & Yao, X.-Q. (2017). Nutritional and active ingredients of medicinal chrysanthemum flower heads affected by different drying methods. Industrial crops and products, 104, 45-51. https://doi.org/10.1016/j.indcrop.2017.04.021