Ban, S., Liu, W., Tian, M., Wang, Q., Yuan, T., Chang, Q., & Li, L. (2022). Rice leaf chlorophyll content estimation using UAV-based spectral images in different regions.
Agronomy,
12(11), 2832.
https://doi.org/https://doi.org/10.3390/agronomy12112832
Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., . . . Khosla, R. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems.
Computers and Electronics in Agriculture,
112, 54-67.
https://doi.org/https://doi.org/10.1016/j.compag.2014.08.012
Chen, X., Li, F., Shi, B., & Chang, Q. (2023). Estimation of Winter Wheat Plant Nitrogen Concentration from UAV Hyperspectral Remote Sensing Combined with Machine Learning Methods.
Remote Sensing,
15(11), 2831.
https://doi.org/https://doi.org/10.3390/rs15112831
Corti, M., Cavalli, D., Cabassi, G., Vigoni, A., Degano, L., & Marino Gallina, P. (2019). Application of a low-cost camera on a UAV to estimate maize nitrogen-related variables.
Precision Agriculture,
20, 675-696.
https://doi.org/https://doi.org/10.1007/s11119-018-9609-y
Daughtry, C. S., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtrey Iii, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance.
Remote sensing of Environment,
74(2), 229-239.
https://doi.org/https://doi.org/10.1016/S0034-4257(00)00113-9
Elvanidi, A., Katsoulas, N., Augoustaki, D., Loulou, I., & Kittas, C. (2018). Crop reflectance measurements for nitrogen deficiency detection in a soilless tomato crop.
Biosystems engineering,
176, 1-11.
https://doi.org/https://doi.org/10.1016/j.biosystemseng.2018.09.019
Escalante, H., Rodríguez-Sánchez, S., Jiménez-Lizárraga, M., Morales-Reyes, A., De La Calleja, J., & Vazquez, R. (2019). Barley yield and fertilization analysis from UAV imagery: a deep learning approach.
International journal of remote sensing,
40(7), 2493-2516.
https://doi.org/https://doi.org/10.1080/01431161.2019.1577571
Gabriel, J. L., Zarco-Tejada, P. J., López-Herrera, P. J., Pérez-Martín, E., Alonso-Ayuso, M., & Quemada, M. (2017). Airborne and ground level sensors for monitoring nitrogen status in a maize crop.
Biosystems engineering,
160, 124-133.
https://doi.org/https://doi.org/10.1016/j.biosystemseng.2017.06.003
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture.
Remote sensing of Environment,
90(3), 337-352.
https://doi.org/https://doi.org/10.1016/j.rse.2003.12.013
Huang, S., Miao, Y., Zhao, G., Yuan, F., Ma, X., Tan, C., . . . Rascher, U. (2015). Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China.
Remote Sensing,
7(8), 10646-10667.
https://doi.org/https://doi.org/10.3390/rs70810646
Huang, Y., Thomson, S. J., Hoffmann, W. C., Lan, Y., & Fritz, B. K. (2013). Development and prospect of unmanned aerial vehicle technologies for agricultural production management.
International Journal of Agricultural and Biological Engineering,
6(3), 1-10.
https://doi.org/https://doi.org/10.3965/j.ijabe.20130603.00
Jaberi-Aghdam, M., Momayezi, M. R., Bagheri, N., Azizi, P., & Nasri, M. (2024). Nitrogen assessment by remote sensing and multispectral imagery in maize (Zea mays L.). Journal of Crop Science and Biotechnology, 27(1), 31-41.
Krienke, B., Ferguson, R. B., Schlemmer, M., Holland, K., Marx, D., & Eskridge, K. (2017). Using an unmanned aerial vehicle to evaluate nitrogen variability and height effect with an active crop canopy sensor.
Precision Agriculture,
18, 900-915.
https://doi.org/https://doi.org/10.1007/s11119-017-9534-5
Lebourgeois, V., Bégué, A., Labbé, S., Houles, M., & Martiné, J.-F. (2012). A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring.
Precision Agriculture,
13, 525-541.
https://doi.org/https://doi.org/10.1007/s11119-012-9262-9
Lebourgeois, V., Bégué, A., Labbé, S., Mallavan, B., Prévot, L., & Roux, B. (2008). Can commercial digital cameras be used as multispectral sensors? A crop monitoring test. Sensors, 8(11), 7300-7322.
Li, J., Zhang, F., Qian, X., Zhu, Y., & Shen, G. (2015). Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle.
Remote Sensing Letters,
6(3), 183-189.
https://doi.org/https://doi.org/10.1080/2150704X.2015.1021934
Lin, F. F., Deng, J. S., Shi, Y. Y., Chen, L. S., & Wang, K. (2010). Investigation of SPAD meter-based indices for estimating rice nitrogen status.
Computers and Electronics in Agriculture,
71, S60-S65.
https://doi.org/https://doi.org/10.1016/j.compag.2009.09.006
Liu, S., Li, L., Gao, W., Zhang, Y., Liu, Y., Wang, S., & Lu, J. (2018). Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Computers and Electronics in Agriculture, 151, 185-195.
Maresma, Á., Ariza, M., Martínez, E., Lloveras, J., & Martínez-Casasnovas, J. A. (2016). Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard UAV service.
Remote Sensing,
8(12), 973.
https://doi.org/https://doi.org/10.3390/rs8120973
Miao, Y., Mulla, D. J., Randall, G. W., Vetsch, J. A., & Vintila, R. (2009). Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn.
Precision Agriculture,
10, 45-62.
https://doi.org/https://doi.org/10.1007/s11119-008-9091-z
Narmilan, A., Gonzalez, F., Salgadoe, A. S. A., Kumarasiri, U. W. L. M., Weerasinghe, H. A. S., & Kulasekara, B. R. (2022). Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery.
Remote Sensing,
14(5), 1140.
https://doi.org/https://doi.org/10.3390/rs14051140
Pádua, L., Vanko, J., Hruška, J., Adão, T., Sousa, J. J., Peres, E., & Morais, R. (2017). UAS, sensors, and data processing in agroforestry: A review towards practical applications.
International journal of remote sensing,
38(8-10), 2349-2391.
https://doi.org/https://doi.org/10.1080/01431161.2017.1297548
Santana, D. C., Cotrim, M. F., Flores, M. S., Baio, F. H. R., Shiratsuchi, L. S., da Silva Junior, C. A., . . . Teodoro, P. E. (2021). UAV-based multispectral sensor to measure variations in corn as a function of nitrogen topdressing.
Remote Sensing Applications: Society and Environment,
23, 100534.
https://doi.org/https://doi.org/10.1016/j.rsase.2021.100534
Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E., & Avizzano, C. A. (2015). Towards smart farming and sustainable agriculture with drones. 2015 international conference on intelligent environments,
Valente, J., Sanz, D., Barrientos, A., Del Cerro, J., Ribeiro, Á., & Rossi, C. (2011). An air-ground wireless sensor network for crop monitoring.
Sensors,
11(6), 6088-6108.
https://doi.org/https://doi.org/10.3390/s110606088
Wang, H., Mortensen, A. K., Mao, P., Boelt, B., & Gislum, R. (2019). Estimating the nitrogen nutrition index in grass seed crops using a UAV-mounted multispectral camera.
International journal of remote sensing,
40(7), 2467-2482.
https://doi.org/https://doi.org/10.1080/01431161.2019.1569783
Xia, T., Miao, Y., Wu, D., Shao, H., Khosla, R., & Mi, G. (2016). Active optical sensing of spring maize for in-season diagnosis of nitrogen status based on nitrogen nutrition index.
Remote Sensing,
8(7), 605.
https://doi.org/https://doi.org/10.3390/rs8070605
Xu, S., Xu, X., Zhu, Q., Meng, Y., Yang, G., Feng, H., . . . Wang, B. (2023). Monitoring leaf nitrogen content in rice based on information fusion of multi-sensor imagery from UAV.
Precision Agriculture,
24(6), 2327-2349.
https://doi.org/https://doi.org/10.1007/s11119-023-10042-8
Xu, X., Fan, L., Li, Z., Meng, Y., Feng, H., Yang, H., & Xu, B. (2021). Estimating leaf nitrogen content in corn based on information fusion of multiple-sensor imagery from UAV.
Remote Sensing,
13(3), 340.
https://doi.org/https://doi.org/10.3390/rs13030340