Abendroth, C., Vilanova, C., Günther, T., Luschnig, O., & Porcar, M. (2015). Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany.
Biotechnology for Biofuels,
8, 1-10.
https://doi.org/10.1186/s13068-015-0271-6
Argun, H., & Kargi, F. (2011). Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview.
International Journal of Hydrogen Energy,
36(13), 7443-7459.
https://doi.org/10.1016/j.ijhydene.2011.03.116
Bao, M., Su, H., & Tan, T. (2013). Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine.
Fuel,
112, 38-44.
https://doi.org/10.1016/j.fuel.2013.04.063
Baskaran, S., & Sathiavelu, M. (2022). Bioaugmentation and biostimulation of dumpsites for plastic degradation. In
Cost Effective Technologies for Solid Waste and Wastewater Treatment (pp. 9-23). Elsevier.
https://doi.org/10.1016/B978-0-12-822933-0.00015-2
Choi, Y., Ryu, J., & Lee, S. R. (2020). Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion.
Journal of Animal Science and Technology,
62(1), 74-83.
https://doi.org/10.5187/jast.2020.62.1.74
Feldewert, C., Lang, K., & Brune, A. (2020). The hydrogen threshold of obligately methyl-reducing methanogens.
FEMS Microbiology Letters,
367(17), fnaa137.
https://doi.org/10.1093/femsle/fnaa137
Gao, Y., Cai, M., Shi, K., Sun, R., Liu, S., Li, Q., . . . Xue, J. (2023). Bioaugmentation enhance the bioremediation of marine crude oil pollution: Microbial communities and metabolic pathways.
Water Science & Technology,
87(1), 228-238.
https://doi.org/10.2166/wst.2022.406
Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., & Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products.
Applied Energy,
144, 73-95.
https://doi.org/10.1016/j.apenergy.2015.01.045
Gokulapriya, G., Chandrasekaran, M., & Soundararajan, R. (2022). Bioaugmentation of Pesticides-Contaminated Environment. In
Bioaugmentation Techniques and Applications in Remediation (pp. 29-42). CRC Press.
https://doi.org/10.1201/9781003187622-3
Hassa, J., Maus, I., Off, S., Pühler, A., Scherer, P., Klocke, M., & Schlüter, A. (2018). Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants.
Applied microbiology and biotechnology,
102, 5045-5063.
https://doi.org/10.1007/s00253-018-8976-7
Rashama, C., Ijoma, G. N., & Matambo, T. S. (2022). Elucidating biodegradation kinetics and biomethane potential trends in substrates containing high levels of phytochemicals: the case of avocado oil processing by-products.
Waste and Biomass Valorization,
13(4), 2071-2081.
https://doi.org/10.1007/s12649-021-01663-z
Karadag, D., Köroğlu, O. E., Ozkaya, B., Cakmakci, M., Heaven, S., & Banks, C. (2014). A review on fermentative hydrogen production from dairy industry wastewater.
Journal of Chemical Technology & Biotechnology,
89(11), 1627-1636.
https://doi.org/10.1002/jctb.4490
Khesareh, S., & Ataei, S. A. (2023). Regulation of Metabolic Pathway for Bio-Hydrogen Production in Dark Fermentation via Redox Potential.
Biomechanism and Bioenergy Research,
2(2), 10-18.
https://doi.org/10.22103/BBR.2023.22231.1054
Lee, M.-J., Zhang, S., Cho, Y.-B., Park, J.-E., Chang, K.-H., & Hwang, S.-J. (2015). Effects of nitrate concentration on biohydrogen production and substrate utilization in dark-fermentation.
Journal of Material Cycles and Waste Management,
17, 27-32.
https://doi.org/10.1007/s10163-013-0219-5
Mazzurco Miritana, V., Gaetani, A., Signorini, A., Marone, A., & Massini, G. (2023). Bioaugmentation strategies for enhancing methane production from shrimp processing waste through anaerobic digestion.
Fermentation,
9(4), 401.
https://doi.org/10.3390/fermentation9040401
Mishra, P., Krishnan, S., Rana, S., Singh, L., Sakinah, M., & Ab Wahid, Z. (2019). Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass.
Energy Strategy Reviews,
24, 27-37.
https://doi.org/10.1016/j.esr.2019.01.001
Mu, Y., Zheng, X.-J., Yu, H.-Q., & Zhu, R.-F. (2006). Biological hydrogen production by anaerobic sludge at various temperatures.
International Journal of Hydrogen Energy,
31(6), 780-785.
https://doi.org/10.1016/j.ijhydene.2005.06.016
Okonkwo, O., Escudie, R., Bernet, N., Mangayil, R., Lakaniemi, A.-M., & Trably, E. (2020). Bioaugmentation enhances dark fermentative hydrogen production in cultures exposed to short-term temperature fluctuations.
Applied microbiology and biotechnology,
104, 439-449.
https://doi.org/10.1007/s00253-019-10203-8
Pugazhendhi, A., Shobana, S., Nguyen, D. D., Banu, J. R., Sivagurunathan, P., Chang, S. W., . . . Kumar, G. (2019). Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production.
International Journal of Hydrogen Energy,
44(3), 1431-1440.
https://doi.org/10.1016/j.ijhydene.2018.11.114
Sharma, S., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy.
Science of the Total Environment,
713, 136633.
https://doi.org/10.1016/j.scitotenv.2020.136633
Shaterzadeh, M. J., & Ataei, S. A. (2017). The effects of temperature, initial pH, and glucose concentration on biohydrogen production from Clostridium acetobutylicum.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,
39(11), 1118-1123.
https://doi.org/10.1080/15567036.2017.1297875
Sheng, T., Meng, Q., Wen, X., Sun, C., Yang, L., & Li, L. (2021). Bioaugmentation with Ruminiclostridium thermocellum M3 to enhance thermophilic hydrogen production from agricultural solid waste.
Journal of Chemical Technology & Biotechnology,
96(6), 1623-1631.
https://doi.org/10.1002/jctb.6682
Silva, J., Mendes, J., Correia, J., Rocha, M., & Micoli, L. (2018). Cashew apple bagasse as new feedstock for the hydrogen production using dark fermentation process.
Journal of biotechnology,
286, 71-78.
https://doi.org/10.1016/j.jbiotec.2018.09.004
Srivastava, N., Srivastava, M., Malhotra, B. D., Gupta, V. K., Ramteke, P. W., Silva, R. N., . . . Mishra, P. K. (2019). Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach.
Biotechnology advances,
37(6), 107384.
https://doi.org/10.1016/j.biotechadv.2019.04.006
Stolze, Y., Bremges, A., Rumming, M., Henke, C., Maus, I., Pühler, A., . . . Schlüter, A. (2016). Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants.
Biotechnology for Biofuels,
9, 1-18.
https://doi.org/10.1186/s13068-016-0565-3
Venkiteshwaran, K., Bocher, B., Maki, J., & Zitomer, D. (2015). Relating anaerobic digestion microbial community and process function: supplementary issue: water microbiology.
Microbiology insights,
8, 37-44.
https://doi.org/10.4137/MBI.S33593
Wang, J., & Yin, Y. (2019). Progress in microbiology for fermentative hydrogen production from organic wastes.
Critical reviews in environmental science and technology,
49(10), 825-865.
https://doi.org/10.1080/10643389.2018.1487226
Wang, Z.-H., Tan, J.-Y., Zhang, Y.-T., Ren, N.-Q., & Zhao, L. (2022). Evaluating bio-hydrogen production potential and energy conversion efficiency from glucose and xylose under diverse concentrations.
Fermentation,
8(12), 739.
https://doi.org/10.3390/fermentation8120739
Zhang, L., Tian, H., Lee, J. T., Lim, J. W., Loh, K.-C., Dai, Y., & Tong, Y. W. (2022). Bioaugmentation strategies via acclimatized microbial consortia for bioenergy production. In
Biomass, Biofuels, Biochemicals (pp. 179-214). Elsevier.
https://doi.org/10.1016/B978-0-323-90633-3.00018-3
Zhang, Y., Zhang, H., Lee, D.-J., Zhang, T., Jiang, D., Zhang, Z., & Zhang, Q. (2020). Effect of enzymolysis time on biohydrogen production from photo-fermentation by using various energy grasses as substrates.
Bioresource Technology,
305, 123062.
https://doi.org/10.1016/j.biortech.2020.123062