Al Seadi, T., Rutz, D., Prassl, H., Kottner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas handbook, Teodorita. Esbjerg, Denmark: by University of Southern Denmark Esbjerg, Niels Bohrs Vej, 910, 279.
Allen, E., Wall, D. M., Herrmann, C., Xia, A., & Murphy, J. D. (2015). What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?
Energy,
81, 352-360.
https://doi.org/https://doi.org/10.1016/j.energy.2014.12.048
Cheng, J., Zhu, C., Zhu, J., Jing, X., Kong, F., & Zhang, C. (2020). Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge.
Journal of Cleaner Production,
242, 118195.
https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118195
Ebrahimi-Nik, M., Heidari, A., Azghandi, S. R., Mohammadi, F. A., & Younesi, H. (2018). Drinking water treatment sludge as an effective additive for biogas production from food waste; kinetic evaluation and biomethane potential test.
Bioresource Technology,
260, 421-426.
https://doi.org/https://doi.org/10.1016/j.biortech.2018.03.112
Hassaan, M. A., El Nemr, A., Elkatory, M. R., Eleryan, A., Ragab, S., El Sikaily, A., & Pantaleo, A. (2021). Enhancement of biogas production from macroalgae ulva latuca via ozonation pretreatment.
Energies,
14(6), 1703.
https://doi.org/https://doi.org/10.3390/en14061703
Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., . . . De Wilde, V. (2016). Towards a standardization of biomethane potential tests.
Water Science and Technology,
74(11), 2515-2522.
https://doi.org/https://doi.org/10.2166/wst.2016.336
Huiliñir, C., Pinto-Villegas, P., Castillo, A., Montalvo, S., & Guerrero, L. (2017). Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements.
Waste Management,
64, 140-148.
https://doi.org/https://doi.org/10.1016/j.wasman.2017.03.023
Karki, R., Chuenchart, W., Surendra, K., Sung, S., Raskin, L., & Khanal, S. K. (2022). Anaerobic co-digestion of various organic wastes: Kinetic modeling and synergistic impact evaluation.
Bioresource Technology,
343, 126063.
https://doi.org/https://doi.org/10.1016/j.biortech.2021.126063
Khademi, S., & Masomi, A. (2022). Production of Biogas from Dairy Manure and Frying Oil in a Continuous Flow Digestion Equipped with an Automatic Control System.
Biomechanism and Bioenergy Research,
1(2), 26-31.
https://doi.org/10.22103/BBR.2022.20451.1021
Li, W., Khalid, H., Zhu, Z., Zhang, R., Liu, G., Chen, C., & Thorin, E. (2018). Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin.
Applied Energy,
226, 1219-1228.
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.05.055
Pramanik, S. K., Suja, F. B., Porhemmat, M., & Pramanik, B. K. (2019). Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste.
Processes,
7(9), 600.
https://doi.org/https://doi.org/10.3390/pr7090600
Raposo Bejines, F., Rubia, M., Fernández-Cegrí, V., & Borja Padilla, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures.
Renewable and sustainable energy reviews,
16(1), 861-877.
https://doi.org/https://doi.org/10.1016/j.rser.2011.09.008
Rezaeifar, J., Rohani, A., & Ebrahimi-Nik, M. (2023). Investigating the Efficiency of Drinking Water Treatment Sludge and Iron-Based Additives in Anaerobic Digestion of Dairy Manure: A Kinetic Modeling Study.
Journal of Agricultural Machinery,
14(1), 15-34.
https://doi.org/https://doi.org/10.22067/jam.2023.83173.1176
Yan, L., Gao, Y., Wang, Y., Liu, Q., Sun, Z., Fu, B., . . . Wang, W. (2012). Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production.
Bioresource Technology,
111, 49-54.
https://doi.org/https://doi.org/10.1016/j.biortech.2012.01.173
Zhu, Q.-L., Wu, B., Pisutpaisal, N., Wang, Y.-W., Ma, K.-d., Dai, L.-C., . . . Xu, Y.-s. (2021). Bioenergy from dairy manure: technologies, challenges and opportunities.
Science of The Total Environment,
790, 148199.
https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148199