Åstrand, B., & Baerveldt, A.-J. (2002). An agricultural mobile robot with vision-based perception for mechanical weed control.
Autonomous robots,
13, 21-35.
https://doi.org/10.1023/A:1015674004201
Bai, Y., Zhang, B., Xu, N., Zhou, J., Shi, J., & Diao, Z. (2023). Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review.
Computers and Electronics in Agriculture,
205, 107584.
https://doi.org/10.1016/j.compag.2022.107584
Bakker, T., Van Asselt, K., Bontsema, J., Müller, J., & van Straten, G. (2010). A path following algorithm for mobile robots.
Autonomous robots,
29, 85-97.
https://doi.org/10.1007/s10514-010-9182-3
Bakker, T., Wouters, H., Van Asselt, K., Bontsema, J., Tang, L., Müller, J., & van Straten, G. (2008). A vision based row detection system for sugar beet.
Computers and Electronics in Agriculture,
60(1), 87-95.
https://doi.org/10.1016/j.compag.2007.07.006
Bawden, O., Ball, D., Kulk, J., Perez, T., & Russell, R. (2014). A lightweight, modular robotic vehicle for the sustainable intensification of agriculture. Proceedings of the 16th Australasian Conference on Robotics and Automation 2014,
Bijay, R., Amarendra, M., & Asim, D. (2023). Steer guidance of autonomous agricultural robot based on pure pursuit algorithm and LiDAR based vector field histogram. Journal of Applied Science and Engineering, 26(10), 1363-1372.
Blasco, J., Aleixos, N., Roger, J., Rabatel, G., & Moltó, E. (2002). AE—Automation and emerging technologies: Robotic weed control using machine vision.
Biosystems Engineering,
83(2), 149-157.
https://doi.org/10.1006/bioe.2002.0109
Bonadies, S., & Gadsden, S. A. (2019). An overview of autonomous crop row navigation strategies for unmanned ground vehicles.
Engineering in Agriculture, Environment and Food,
12(1), 24-31.
https://doi.org/10.1016/j.eaef.2018.09.001
Chen, P., Ma, X., Wang, F., & Li, J. (2021). A new method for crop row detection using unmanned aerial vehicle images.
Remote Sensing,
13(17), 3526.
https://doi.org/10.3390/rs13173526
Choi, K. H., Han, S. K., Han, S. H., Park, K.-H., Kim, K.-S., & Kim, S. (2015). Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields.
Computers and Electronics in Agriculture,
113, 266-274.
https://doi.org/10.1016/j.compag.2015.02.014
Dong, F., Heinemann, W., & Kasper, R. (2011). Development of a row guidance system for an autonomous robot for white asparagus harvesting.
Computers and Electronics in Agriculture,
79(2), 216-225.
https://doi.org/10.1016/j.compag.2011.10.002
Fontaine, V., & Crowe, T. (2006). Development of line-detection algorithms for local positioning in densely seeded crops. Canadian biosystems engineering, 48, 7.
García-Santillán, I., Peluffo-Ordoñez, D., Caranqui, V., Pusdá, M., Garrido, F., & Granda, P. (2018). Computer vision-based method for automatic detection of crop rows in potato fields. Proceedings of the International Conference on Information Technology & Systems (ICITS 2018),
https://doi.org/10.1007/978-3-319-73450-7_34
Kamandar, M. R., Massah, J., & Khoshnam, F. (2022). Measuring Some Mechanical Properties of Boxwood and Privet Plants by an Izod Impact Tester.
Biomechanism and Bioenergy Research,
1(2), 7-12.
https://doi.org/10.22103/BBR.2022.20351.1014
Mueller-Sim, T., Jenkins, M., Abel, J., & Kantor, G. (2017). The Robotanist: A ground-based agricultural robot for high-throughput crop phenotyping. 2017 IEEE international conference on robotics and automation (ICRA),
https://doi.org/10.1109/ICRA.2017.7989418
Rovira-Más, F., Zhang, Q., & Reid, J. F. (2008). Stereo vision three-dimensional terrain maps for precision agriculture.
Computers and Electronics in Agriculture,
60(2), 133-143.
https://doi.org/10.1016/j.compag.2007.07.007
Sainz-Costa, N., Ribeiro, A., Burgos-Artizzu, X. P., Guijarro, M., & Pajares, G. (2011). Mapping wide row crops with video sequences acquired from a tractor moving at treatment speed.
Sensors,
11(7), 7095-7109.
https://doi.org/10.3390/s110707095
Sarri, D., Lombardo, S., Lisci, R., De Pascale, V., & Vieri, M. (2020). AgroBot smash a robotic platform for the sustainable precision agriculture. Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production: International Mid-Term Conference 2019 of the Italian Association of Agricultural Engineering (AIIA),
https://doi.org/10.1007/978-3-030-39299-4_85
Shi, J., Bai, Y., Diao, Z., Zhou, J., Yao, X., & Zhang, B. (2023). Row detection BASED navigation and guidance for agricultural robots and autonomous vehicles in row-crop fields: methods and applications.
Agronomy,
13(7), 1780.
https://doi.org/10.3390/agronomy13071780
Van Evert, F. K., Van Der Heijden, G. W., Lotz, L. A., Polder, G., Lamaker, A., De Jong, A., . . . Van Der Zalm, T. (2006). A mobile field robot with vision-based detection of volunteer potato plants in a corn crop.
Weed Technology,
20(4), 853-861.
https://doi.org/10.1614/WT-05-132.1
Wu, X., Xu, M., & Wang, L. (2013). Differential speed steering control for four-wheel independent driving electric vehicle. 2013 IEEE International Symposium on Industrial Electronics,
https://doi.org/10.1109/ISIE.2013.6563667
Zhang, W., Miao, Z., Li, N., He, C., & Sun, T. (2022). Review of current robotic approaches for precision weed management.
Current robotics reports,
3(3), 139-151.
https://doi.org/10.1007/s43154-022-00086-5