Abdi-pour, M., & Shamsi, M. (2023). Design Methodology and Optimum Camera Setups for an Experimental Remote-Control Manipulator for Servicing Date Palms.
Biomechanism and Bioenergy Research,
2(1), 76-83.
10.22103/BBR.2023.20646.1038
Benavides, M., Cantón-Garbín, M., Sánchez-Molina, J., & Rodríguez, F. (2020). Automatic tomato and peduncle location system based on computer vision for use in robotized harvesting.
Applied Sciences,
10(17), 5887.
https://doi.org/10.3390/app10175887
Chen, X. (2015). Simplicity Driven Solution for Recognition and Localization of Tomatoes and Fruits in a Robotic Harvesting Environment University of Guelph].
Feng, Q., Zou, W., Fan, P., Zhang, C., & Wang, X. (2018). Design and test of robotic harvesting system for cherry tomato.
International Journal of Agricultural and Biological Engineering,
11(1), 96-100.
https://doi.org/10.25165/j.ijabe.20181101.2853
Gonzalez, R. C. (2009). Digital image processing. Pearson education india.
Hashimoto, A., Suehara, K.-i., & Kameoka, T. (2012). Quantitative evaluation of surface color of tomato fruits cultivated in remote farm using digital camera images.
SICE Journal of Control, Measurement, and System Integration,
5(1), 18-23.
https://doi.org/10.9746/jcmsi.5.18
Ikeda, T., Fukuzaki, R., Sato, M., Furuno, S., & Nagata, F. (2021). Tomato recognition for harvesting robots considering overlapping leaves and stems.
Journal of Robotics and Mechatronics,
33(6), 1274-1283.
https://doi.org/10.20965/jrm.2021.p1274
Lili, W., Bo, Z., Jinwei, F., Xiaoan, H., Shu, W., Yashuo, L., . . . Chongfeng, W. (2017). Development of a tomato harvesting robot used in greenhouse.
International Journal of Agricultural and Biological Engineering,
10(4), 140-149.
https://doi.org/10.25165/j.ijabe.20171004.3204
Malik, M. H., Zhang, T., Li, H., Zhang, M., Shabbir, S., & Saeed, A. (2018). Mature tomato fruit detection algorithm based on improved HSV and watershed algorithm.
IFAC-PapersOnLine,
51(17), 431-436.
https://doi.org/10.1016/j.ifacol.2018.08.183
Menesatti, P., Angelini, C., Pallottino, F., Antonucci, F., Aguzzi, J., & Costa, C. (2012). RGB color calibration for quantitative image analysis: The “3D Thin-Plate Spline” warping approach.
Sensors,
12(6), 7063-7079.
https://doi.org/10.3390/s120607063
Mohammadi Manour, H., Alimardani, R., & Omid, M. (2013). Computer vision system for automatic harvesting of greenhouse tomatoes under natural light conditions. Agricultural machines, 3(1), 9-15.
Wan, P., Toudeshki, A., Tan, H., & Ehsani, R. (2018). A methodology for fresh tomato maturity detection using computer vision.
Computers and electronics in agriculture,
146, 43-50.
https://doi.org/10.1016/j.compag.2018.01.011
Wang, X.-X., Zhao, F., Zhang, G., Zhang, Y., & Yang, L. (2017). Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study.
Frontiers in plant science,
8, 1978.
https://doi.org/10.3389/fpls.2017.01978
Wei, X., Jia, K., Lan, J., Li, Y., Zeng, Y., & Wang, C. (2014). Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot.
Optik,
125(19), 5684-5689.
https://doi.org/10.1016/j.ijleo.2014.07.001
Whittaker, D., Miles, G., Mitchell, O., & Gaultney, L. (1987). Fruit location in a partially occluded image.
Transactions of the ASAE,
30(3), 591-0596.
https://doi.org/10.13031/2013.30444
Yin, H., Chai, Y., Yang, S. X., & Mittal, G. S. (2009). Ripe tomato extraction for a harvesting robotic system. 2009 IEEE International Conference on Systems, Man and Cybernetics,
https://doi.org/10.1109/ICSMC.2009.5345994
Yoshida, T., Fukao, T., & Hasegawa, T. (2019). A tomato recognition method for harvesting with robots using point clouds. 2019 IEEE/SICE International Symposium on System Integration (SII).
https://doi.org/10.1109/SII.2019.8700358
Zeng, T., Li, S., Song, Q., Zhong, F., & Wei, X. (2023). Lightweight tomato real-time detection method based on improved YOLO and mobile deployment.
Computers and electronics in agriculture,
205, 107625.
https://doi.org/10.1016/j.compag.2023.107625