Alahacoon, N., & Edirisinghe, M. (2022). A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale.
Geomatics, Natural Hazards Risk, 13(1), 762-799.
https://doi.org/10.1080/19475705.2022.2044394.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
Bajgiran, P. R., Darvishsefat, A. A., Khalili, A., & Makhdoum, M. F. (2008). Using AVHRR-based vegetation indices for drought monitoring in the Northwest of Iran.
Journal of Arid Environments, 72(6), 1086-1096.
https://doi.org/10.1016/j.jaridenv.2007.12.004.
Benyahia, F., Bastos Campos, F., Ben Abdelkader, A., Basile, B., Tagliavini, M., Andreotti, C., & Zanotelli, D. (2023). Assessing Grapevine Water Status by Integrating Vine Transpiration, Leaf Gas Exchanges, Chlorophyll Fluorescence and Sap Flow Measurements.
Agronomy, 13(2), 464.
https://doi.org/10.3390/agronomy13020464.
Dhillon, R., Udompetaikul, V., Rojo, F., Roach, J., Upadhyaya, S., Slaughter, D., Lampinen, B., & Shackel, K. (2014). Detection of plant water stress using leaf temperature and microclimatic measurements in almond, walnut, and grape crops.
Transactions of the ASABE, 57(1), 297-304. doi:
https://doi.org/10.13031/trans.57.10319.
Dukat, P., Ziemblińska, K., Räsänen, M., Vesala, T., Olejnik, J., & Urbaniak, M. (2023). Scots pine responses to drought investigated with eddy covariance and sap flow methods.
European Journal of Forest Research, 142(3), 671-690.
https://doi.org/10.1007/s10342-023-01549-w.
Elbeltagi, A., Srivastava, A., Deng, J., Li, Z., Raza, A., Khadke, L., Yu, Z., & El-Rawy, M. (2023). Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments.
Agricultural Water Management, 283, 108302. doi:
https://doi.org/10.1016/j.agwat.2023.108302.
Farhan, I. A., & Al-Bakri, J. (2019). Detection of a real time remote sensing indices and soil moisture for drought monitoring and assessment in Jordan.
Open Journal of Geology, 9(13), 1048-1068.
https://doi.org/10.4236/ojg.2019.913105.
González-Dugo, M., Moran, M., Mateos, L., & Bryant, R. (2006). Canopy temperature variability as an indicator of crop water stress severity.
Irrigation science, 24(4), 233-240.
https://doi.org/10.1007/s00271-005-0022-8.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit.
New Phytologist, 226(6), 1550-1566. doi:
https://doi.org/10.1111/nph.16485.
Han, M., Zhang, H., DeJonge, K. C., Comas, L. H., & Gleason, S. (2018). Comparison of three crop water stress index models with sap flow measurements in maize.
Agricultural Water Management, 203, 366-375.
https://doi.org/10.1016/j.agwat.2018.02.030.
Idso, S. B., Jackson, R., Pinter Jr, P., Reginato, R., & Hatfield, J. (1981). Normalizing the stress-degree-day parameter for environmental variability.
Agricultural Meteorology, 24, 45-55.
https://doi.org/10.1016/0002-1571(81)90032-7.
Jackson, R. D., Idso, S., Reginato, R., & Pinter Jr, P. (1981). Canopy temperature as a crop water stress indicator.
Water resources research, 17(4), 1133-1138.
https://doi.org/10.1029/WR017i004p01133.
Jackson, R. D., Kustas, W. P., & Choudhury, B. (1988). A reexamination of the crop water stress index.
Irrigation science, 9, 309-317. doi:
https://doi.org/10.1007/BF00296705.
Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods.
Journal of experimental botany, 55(407), 2427-2436.
https://doi.org/10.1093/jxb/erh213.
Kizer, E. E., Upadhyaya, S. K., Ko-Madden, C. T., Drechsler, K. M., Meyers, J. N., Rojo, F. E., Schramm, A. E., & Zhang, Q. S. (2017). Continuous, proximal leaf monitoring system to assist with precision irrigation implementation using a wireless mesh network of sensors and controllers in almonds. Paper presented at the 2017 ASABE Annual International Meeting.
https://doi.org/10.13031/aim.201701094.
Lei, Y., Zhang, H., Chen, F., & Zhang, L. J. S. o. t. t. E. (2016). How rural land use management facilitates drought risk adaptation in a changing climate—A case study in arid northern China.
Science of the total Environment, 550, 192-199.
https://doi.org/10.1016/j.scitotenv.2016.01.098.
Park, S., Ryu, D., Fuentes, S., Chung, H., O’connell, M., & Kim, J. (2021). Dependence of CWSI-based plant water stress estimation with diurnal acquisition times in a nectarine orchard.
Remote Sensing, 13(14), 2775.
https://doi.org/10.3390/rs13142775.
Paulo, R. L. d., Garcia, A. P., Umezu, C. K., Camargo, A. P. d., Soares, F. T., & Albiero, D. (2023). Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing.
Sensors, 23(3), 1318. doi:
https://doi.org/10.3390/s23031318.
Romero-Trigueros, C., Bayona Gambín, J. M., Nortes Tortosa, P. A., Alarcón Cabañero, J. J., & Nicolás Nicolás, E. (2019). Determination of crop water stress index by infrared thermometry in grapefruit trees irrigated with saline reclaimed water combined with deficit irrigation.
Remote Sensing, 11(7), 757.
https://doi.org/10.3390/rs11070757.
Ru, C., Hu, X., Wang, W., Ran, H., Song, T., & Guo, Y. (2020). Evaluation of the crop water stress index as an indicator for the diagnosis of grapevine water deficiency in greenhouses.
Horticulturae, 6(4), 86.
https://doi.org/10.3390/horticulturae6040086.
Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach.
JAWRA Journal of the American Water Resources Association, 49(3), 577-591.
https://doi.org/10.1111/jawr.12057.
Shekoofa, A., Sinclair, T. R., Messina, C. D., & Cooper, M. (2016). Variation among maize hybrids in response to high vapor pressure deficit at high temperatures.
Crop Science, 56(1), 392-396. doi:
https://doi.org/10.2135/cropsci2015.02.0134.
Sinclair, T. R., Devi, J., Shekoofa, A., Choudhary, S., Sadok, W., Vadez, V., Riar, M., & Rufty, T. (2017). Limited-transpiration response to high vapor pressure deficit in crop species.
Plant Science, 260, 109-118. doi:
https://doi.org/10.1016/j.plantsci.2017.04.007.
Tang, Z., Jin, Y., Brown, P. H., & Park, M. (2023). Estimation of tomato water status with photochemical reflectance index and machine learning: Assessment from proximal sensors and UAV imagery.
Frontiers in Plant Science, 14.
https://doi.org/10.3389/fpls.2023.1057733.
Testi, L., Goldhamer, D., Iniesta, F., & Salinas, M. (2008). Crop water stress index is a sensitive water stress indicator in pistachio trees.
Irrigation science, 26, 395-405.
https://doi.org/10.1007/s00271-008-0104-5.
Wang, Y., Liu, Z., Xiemuxiding, A., Zhang, X., Duan, L., & Li, R. J. J. o. P. G. R. (2023). Fulvic acid, brassinolide, and uniconazole mediated regulation of morphological and physiological traits in maize seedlings under water stress.
42(3), 1762-1774.
https://doi.org/10.1007/s00344-022-10658-6.
Yin, S., Ibrahim, H., Schnable, P. S., Castellano, M. J., & Dong, L. (2021). A Field‐Deployable, Wearable Leaf Sensor for Continuous Monitoring of Vapor‐Pressure Deficit.
Advanced Materials Technologies, 6(6), 2001246.
https://doi.org/10.1002/admt.202001246.
Zhang, L., Zhang, H., Zhu, Q., & Niu, Y. (2023). Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value.
Agricultural Water Management, 285, 108349.
https://doi.org/10.1016/j.agwat.2023.108349.
Zhou, Z., Majeed, Y., Naranjo, G. D., & Gambacorta, E. M. (2021). Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications.
Computers Electronics in Agriculture, 182, 106019.
https://doi.org/10.1016/j.compag.2021.106019.