REFERENCES
Alizadeh, A. (2006). Principles of Applied Hydrology. Publications of Imam Reza University. Twenty-sixth edition. 811 pages. (In Persian)
Cadenas, J. M., Garrido, M. C., Martínez-España, R., & Guillén-Navarro, M. A. (2020). Making decisions for frost prediction in agricultural crops in a soft computing framework.
Computers and Electronics in Agriculture, 175, 105587.
https://doi.org/10.1016/j.compag.2020.105587
Castañeda-Miranda, A., & Castaño-Meneses, V. M. (2020). Internet of things for smart farming and frost intelligent control in greenhouses.
Computers and Electronics in Agriculture, 176, 105614.
https://doi.org/10.1016/j.compag.2020.105614
Chevalier, R. F., Hoogenboom, G., McClendon, R. W., & Paz, J. O. (2012). A web-based fuzzy expert system for frost warnings in horticultural crops.
Environmental Modelling & Software, 35, 84-91.
https://doi.org/10.1016/j.envsoft.2012.02.010.
Diniz, E. S., Lorenzon, A. S., Castro, N. L. M., Marcatti, G. E., Marcatti, G. E., Santos, O. P., Junior, J. K. D., Cavalcante, R. B. L., Fernandes-Filho, E. I., & Amaral. C. H. (2021). Forecasting frost risk in forest plantations by the combination of spatial data and machine learning algorithms.
Agricultural and forest meteorology, 306, 108450.
https://doi.org/10.1016/j.agrformet.2021.108450.
Ding, L., Tamura, Y., Noborio, K., & Shibuya, K. (2021). Frost forecast-a practice of machine learning from data.
International Journal of Reasoning-based Intelligent Systems, 13(4), 191-203.
https://doi.org/10.1504/IJRIS.2021.10038162.
Ding, L., Tamura, Y., Yoshida, S., Owada, K., Toyoda, T., Morishita, Y., Noborio, K., & Shibuya, K. (2021). Ensemble causal modelling for frost forecast in vineyard.
Procedia Computer Science, 192, 3194-3203.
https://doi.org/10.1016/j.procs.2021.09.092.
Fraisse. C., Andreis. J., Borba. T., Cerbaro. V., Gelcer. E., Pavan. W., Pequeno. D., Perondi. D., Shen. X., Staub. C., Uryasev. O., Wagner. A. P. (2016). AgroClimate-Tools for managing climate risk in agriculture.
Agrometeoros, 24(1), 121-129.
https://doi.org/10.31062/agrom.v24i1.24887
Fraisse. C. W., Breuer. N. E., Zierden. D., Bellow. J. D., Paz. J., Cabrera. V. E., Garcia. A., Garcia . Y., Ingram. K. T., Hatch. U., Hoogenboomd. G., Jones. J. W., & O’Brien. J.J. (2006). AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA.
Computers and electronics in agriculture, 53(1), 13-27.
https://doi.org/10.1016/j.compag.2006.03.002
Guillén‐Navarro, M. A., Martínez‐España, R., López, B., & Cecilia, J. M. (2021). A high‐performance IoT solution to reduce frost damages in stone fruits. Concurrency and Computation:
Practice and Experience, 33(2), e5299.
https://doi.org/10.1002/cpe.5299.
Hubbard, K. G., Mahmood, R., & Carlson, C. (2003). Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature.
Agronomy Journal, 95(2), 323-328.
https://doi.org/10.2134/agronj2003.0323.
Jain, A., McClendon, R. W., & Hoogenboom, G. (2006). Freeze prediction for specific locations using artificial neural networks.
Transactions of the ASABE, 49(6), 1955-1962.
https://doi.org/10.13031/2013.22275.
Kimball, J. S., Running, S. W., & Nemani, R. (1997). An improved method for estimating surface humidity from daily minimum temperature.
Agricultural and forest meteorology, 85(1-2), 87-98.
https://doi.org/10.1016/S0168-1923(96)02366-0.
Powell, A. A., Himelrick, D. G. (2003). Principles of freeze protection for fruit crops. Available at: www.aces.edu/dept/peaches/freeze.html. Alabama Cooperative Extension System. Accessed 21 August 2006.
Prabha, T., & Hoogenboom, G. (2008). Evaluation of the Weather Research and Forecasting model for two frost events.
Computers and electronics in agriculture, 64(2), 234-247
. https://doi.org/10.1016/j.compag.2008.05.019.
Shank, D. B., Hoogenboom, G., & McClendon, R. W. (2008). Dewpoint temperature prediction using artificial neural networks.
Journal of applied meteorology and climatology, 47(6), 1757-1769.
https://doi.org/10.1080/08839510802226785.
Smith, B. A., Hoogenboom, G., & McClendon, R. W. (2009). Artificial neural networks for automated year-round temperature prediction.
Computers and Electronics in Agriculture, 68(1), 52-61.
https://doi.org/10.1016/j.compag.2009.04.003.
Tamura, Y., Ding, L., Noborio, K., & Shibuya, K. (2020). Frost prediction for vineyard using machine learning. 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems (SCIS-ISIS).
https://doi.org/10.1109/SCISISIS50064.2020.9322770.