Regulation of Metabolic Pathway for Bio-Hydrogen Production in Dark Fermentation via Redox Potential

Document Type : Original Research

Authors

Chemical Engineering Department, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract

The ever increase in global population and consequently daily increase in energy consumption are casing various environmental pollution and worldwide climate changes. Replace fossil with different type of clean and renewable energy or decreasing the consumption of petroleum-based fuels will greatly reduce the hazardous effects of fossil fuels. Biohydrogen is a suitable alternative source of energy that can reduce dependency on conventional fuels. In this research the effect of the external oxido-reduction system on biohydrogen production from glucose fermentated in a dark medium was carried out and the effect of oxidation potential on biohydrogen production from clostridium acetobutylicum was investigated.  The maximum hydrogen production rate and accumulative hydrogen were calculated using the modified Gompertz equation.  Results show that the increase of voltage to 600 mV, leads to an increase of 25% in hydrogen production rate and a 19% increase in yield. It was also observed that the amount of undesired end products like ethanol and lactate decreased with the increase of oxidation potential and the acetate to butyrate ratio (A/B) increased from 0.82 to 1.52 when the voltage was raised to 600 mV.

Keywords


Annous, B. A., Shieh, J. S., Shen, G. J., Jain, M. K., & Zeikus, J. G. (1996). Regulation of hydrogen metabolism in Butyribacterium methylotrophicum by substrate and pH. Applied Microbiology and Biotechnology, 45(6), 804–810. https://doi.org/10.1007/s002530050766
Antonopoulou, G., Ntaikou, I., Stamatelatou, K., & Lyberatos, G. (2011). Biological and fermentative production of hydrogen. Handbook of Biofuels Production: Processes and Technologies, 305–346. https://doi.org/10.1533/9780857090492.2.305
Arimi, M. M., Knodel, J., Kiprop, A., Namango, S. S., Zhang, Y., & Geißen, S. U. (2015). Strategies for improvement of biohydrogen production from organic-rich wastewater: A review. Biomass and Bioenergy, 75, 101–118. https://doi.org/10.1016/j.biombioe.2015.02.011
Balat, M. (2009). Production of Hydrogen via Biological Processes. 9, 31(20), 1802–1812. https://doi.org/10.1080/15567030802463109
Bisaillon, A., Turcot, J., & Hallenbeck, P. C. (2006). The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. International Journal of Hydrogen Energy, 31(11), 1504–1508. https://doi.org/10.1016/j.ijhydene.2006.06.016
Cai, G., Jin, B., Monis, P., & Saint, C. (2013). A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production. Biotechnology and Bioengineering, 110(1), 338–342. https://doi.org/10.1002/bit.24596
Cao, Y., Liu, H., Liu, W., Guo, J., & Xian, M. (2022). Debottlenecking the biological hydrogen production pathway of dark fermentation: insight into the impact of strain improvement. Microbial Cell Factories, 21(1), 1–16. https://doi.org/10.1186/s12934-022-01893-3
Das, D., & Veziroǧlu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13–28. https://doi.org/10.1016/S0360-3199(00)00058-6
Dzulkarnain, E. L. N., Audu, J. O., Wan Dagang, W. R. Z., & Abdul-Wahab, M. F. (2022). Microbiomes of biohydrogen production from dark fermentation of industrial wastes: current trends, advanced tools and future outlook. Bioresources and Bioprocessing 2022 9:1, 9(1), 1–25. https://doi.org/10.1186/s40643-022-00504-8
Elam, C. C., Padró, C. E. G., Sandrock, G., Luzzi, A., Lindblad, P., & Hagen, E. F. (2003). Realizing the hydrogen future: the International Energy Agency’s efforts to advance hydrogen energy technologies. International Journal of Hydrogen Energy, 28(6), 601–607. https://doi.org/10.1016/S0360-3199(02)00147-7
Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., & Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95. https://doi.org/10.1016/j.apenergy.2015.01.045
Guo, X. M., Trably, E., Latrille, E., Carrre, H., & Steyer, J. P. (2010). Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy, 35(19), 10660–10673. https://doi.org/10.1016/j.ijhydene.2010.03.008
Hallenbeck, P. C. (2009). Fermentative hydrogen production: Principles, progress, and prognosis. International Journal of Hydrogen Energy, 34(17), 7379–7389. https://doi.org/10.1016/j.ijhydene.2008.12.080
Hallenbeck, P. C., & Ghosh, D. (2012). Improvements in fermentative biological hydrogen production through metabolic engineering. Journal of Environmental Management, 95(SUPPL.), S360–S364. https://doi.org/10.1016/j.jenvman.2010.07.021
Jeong, T. Y., Cha, G. C., Yeom, S. H., & Choi, S. S. (2008). Comparison of hydrogen production by four representative hydrogen-producing bacteria. Journal of Industrial and Engineering Chemistry, 14(3), 333–337. https://doi.org/10.1016/j.jiec.2007.09.014
Kim, D. H., Kim, S. H., Kim, H. W., Kim, M. S., & Shin, H. S. (2011). Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresource Technology, 102(18), 8501–8506. https://doi.org/10.1016/j.biortech.2011.04.089
Kim, S. H., Han, S. K., & Shin, H. S. (2006). Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochemistry, 41(1), 199–207. https://doi.org/10.1016/j.procbio.2005.06.013
Konieczny, A., Mondal, K., Wiltowski, T., & Dydo, P. (2008). Catalyst development for thermocatalytic decomposition of methane to hydrogen. International Journal of Hydrogen Energy, 33(1), 264–272. https://doi.org/10.1016/j.ijhydene.2007.07.054
Koutra, E., Tsafrakidou, P., Sakarika, M., & Kornaros, M. (2020). Microalgal Biorefinery. Microalgae Cultivation for Biofuels Production, 163–185. https://doi.org/10.1016/B978-0-12-817536-1.00011-4
Levin, D. B., Zhu, H., Beland, M., Cicek, N., & Holbein, B. E. (2007). Potential for hydrogen and methane production from biomass residues in Canada. Bioresource Technology, 98(3), 654–660. https://doi.org/10.1016/j.biortech.2006.02.027
Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 368(6490), 489–493. https://doi.org/10.1126/science.abb3221
Liu, H., Cheng, T., Xian, M., Cao, Y., Fang, F., & Zou, H. (2014). Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals. Biotechnology Advances, 32(2), 382–389. https://doi.org/10.1016/j.biotechadv.2013.12.003
Morimoto, K., Kimura, T., Sakka, K., & Ohmiya, K. (2005). Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiology Letters, 246(2), 229–234. https://doi.org/10.1016/j.femsle.2005.04.014
Shaterzadeh, M. J., & Ataei, S. A. (2017). The effects of temperature, initial pH, and glucose concentration on biohydrogen production from Clostridium acetobutylicum. 39(11), 1118–1123. https://doi.org/10.1080/15567036.2017.1297875
Singh, N., & Sarma, S. (2022). Biological routes of hydrogen production: a critical assessment. Handbook of Biofuels, 419–434. https://doi.org/10.1016/B978-0-12-822810-4.00021-X
Venkata Mohan, S., Vijaya Bhaskar, Y., & Sarma, P. N. (2007). Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Water Research, 41(12), 2652–2664. https://doi.org/10.1016/j.watres.2007.02.015