Annous, B. A., Shieh, J. S., Shen, G. J., Jain, M. K., & Zeikus, J. G. (1996). Regulation of hydrogen metabolism in Butyribacterium methylotrophicum by substrate and pH.
Applied Microbiology and Biotechnology,
45(6), 804–810.
https://doi.org/10.1007/s002530050766
Antonopoulou, G., Ntaikou, I., Stamatelatou, K., & Lyberatos, G. (2011). Biological and fermentative production of hydrogen.
Handbook of Biofuels Production: Processes and Technologies, 305–346.
https://doi.org/10.1533/9780857090492.2.305
Arimi, M. M., Knodel, J., Kiprop, A., Namango, S. S., Zhang, Y., & Geißen, S. U. (2015). Strategies for improvement of biohydrogen production from organic-rich wastewater: A review.
Biomass and Bioenergy,
75, 101–118.
https://doi.org/10.1016/j.biombioe.2015.02.011
Bisaillon, A., Turcot, J., & Hallenbeck, P. C. (2006). The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli.
International Journal of Hydrogen Energy,
31(11), 1504–1508.
https://doi.org/10.1016/j.ijhydene.2006.06.016
Cai, G., Jin, B., Monis, P., & Saint, C. (2013). A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production.
Biotechnology and Bioengineering,
110(1), 338–342.
https://doi.org/10.1002/bit.24596
Cao, Y., Liu, H., Liu, W., Guo, J., & Xian, M. (2022). Debottlenecking the biological hydrogen production pathway of dark fermentation: insight into the impact of strain improvement.
Microbial Cell Factories,
21(1), 1–16.
https://doi.org/10.1186/s12934-022-01893-3
Dzulkarnain, E. L. N., Audu, J. O., Wan Dagang, W. R. Z., & Abdul-Wahab, M. F. (2022). Microbiomes of biohydrogen production from dark fermentation of industrial wastes: current trends, advanced tools and future outlook.
Bioresources and Bioprocessing 2022 9:1,
9(1), 1–25.
https://doi.org/10.1186/s40643-022-00504-8
Elam, C. C., Padró, C. E. G., Sandrock, G., Luzzi, A., Lindblad, P., & Hagen, E. F. (2003). Realizing the hydrogen future: the International Energy Agency’s efforts to advance hydrogen energy technologies.
International Journal of Hydrogen Energy,
28(6), 601–607.
https://doi.org/10.1016/S0360-3199(02)00147-7
Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., & Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products.
Applied Energy,
144, 73–95.
https://doi.org/10.1016/j.apenergy.2015.01.045
Guo, X. M., Trably, E., Latrille, E., Carrre, H., & Steyer, J. P. (2010). Hydrogen production from agricultural waste by dark fermentation: A review.
International Journal of Hydrogen Energy,
35(19), 10660–10673.
https://doi.org/10.1016/j.ijhydene.2010.03.008
Hallenbeck, P. C., & Ghosh, D. (2012). Improvements in fermentative biological hydrogen production through metabolic engineering.
Journal of Environmental Management,
95(SUPPL.), S360–S364.
https://doi.org/10.1016/j.jenvman.2010.07.021
Jeong, T. Y., Cha, G. C., Yeom, S. H., & Choi, S. S. (2008). Comparison of hydrogen production by four representative hydrogen-producing bacteria.
Journal of Industrial and Engineering Chemistry,
14(3), 333–337.
https://doi.org/10.1016/j.jiec.2007.09.014
Kim, D. H., Kim, S. H., Kim, H. W., Kim, M. S., & Shin, H. S. (2011). Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance.
Bioresource Technology,
102(18), 8501–8506.
https://doi.org/10.1016/j.biortech.2011.04.089
Kim, S. H., Han, S. K., & Shin, H. S. (2006). Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter.
Process Biochemistry,
41(1), 199–207.
https://doi.org/10.1016/j.procbio.2005.06.013
Konieczny, A., Mondal, K., Wiltowski, T., & Dydo, P. (2008). Catalyst development for thermocatalytic decomposition of methane to hydrogen.
International Journal of Hydrogen Energy,
33(1), 264–272.
https://doi.org/10.1016/j.ijhydene.2007.07.054
Levin, D. B., Zhu, H., Beland, M., Cicek, N., & Holbein, B. E. (2007). Potential for hydrogen and methane production from biomass residues in Canada.
Bioresource Technology,
98(3), 654–660.
https://doi.org/10.1016/j.biortech.2006.02.027
Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2).
Science,
368(6490), 489–493.
https://doi.org/10.1126/science.abb3221
Liu, H., Cheng, T., Xian, M., Cao, Y., Fang, F., & Zou, H. (2014). Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.
Biotechnology Advances,
32(2), 382–389.
https://doi.org/10.1016/j.biotechadv.2013.12.003
Morimoto, K., Kimura, T., Sakka, K., & Ohmiya, K. (2005). Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production.
FEMS Microbiology Letters,
246(2), 229–234.
https://doi.org/10.1016/j.femsle.2005.04.014
Shaterzadeh, M. J., & Ataei, S. A. (2017). The effects of temperature, initial pH, and glucose concentration on biohydrogen production from Clostridium acetobutylicum.
39(11), 1118–1123.
https://doi.org/10.1080/15567036.2017.1297875
Venkata Mohan, S., Vijaya Bhaskar, Y., & Sarma, P. N. (2007). Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia.
Water Research,
41(12), 2652–2664.
https://doi.org/10.1016/j.watres.2007.02.015