REFRENCES
Aghbashlo, M., Kianmehr, M., & Samimi-Akhijahani, H. (2008). Influence of DryingConditions on the Effective Moisture Diffusivity, Energy of Activation and Energy Consumption During the Thin-layer Drying of Berberis Fruit (Berberidaceae). Energy Con Manag, 49, 2865-2871. https://doi.org/10.1016/j.enconman.2008.03.009
Akpan, G. E., Onwe, D. N., Fakayode, O. A., & Offiong, U. D. (2016). Design and Development of an Agricultural and Bio-materials Cabinet Tray dryer.
Science Research,
4(6), 174-182.
https://doi.org/10.11648/j.ijfet.20160201.14
Al-Harahsheh, M., Ala’a, H., & Magee, T. (2009). Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration.
Chemical Engineering and Processing: Process Intensification,
48(1), 524-531.
https://doi.org/10.1016/j.cep.2008.06.010
AOAC. (1990). Official methods of analysis (15th Edn). Association of Official Analytical Chemists.Washington DC, USA.
Arslan, D., & Özcan, M. M. (2010). Study the effect of sun, oven and microwave drying on quality of onion slices.
LWT-Food Science and Technology,
43(7), 1121-1127.
https://doi.org/10.1016/j.lwt.2010.02.019
Darvishi, H. (2012). Energy consumption and mathematical modeling of microwave drying of potato slices. Agricultural Engineering International: CIGR Journal, 14(1), 94-102.
Ehiem, J., Irtwange, S., & Obetta, S. (2009). Design and development of an industrial fruit and vegetable dryer. Research Journal of Applied Sciences, Engineering and Technology, 1(2), 44-53.
Ghasemkhani, H., Rafiei, S., Kayhani, A., & Dalvand, M. (2018). Evaluation of drying apple slices using a rotary dryer equipped with a heat exchanger. Journal of Agricultural Machinery Mechanical Research, 7(2), 9-19.
Hosseini, F., Shakiba, R., Rezvani, Z., & Arslan, S. (2023). Investigating the Kinetics, Energy and Exergy of Drying Apple slices Using Infrared Radiation.
Biomechanism and Bioenergy Research,
2(1), 1-10.
https://doi.org/10.22103/BBR.2023.21678.1043
Ikem, I., Osim, A., Nyong, O., & Takim, S. (2016). Determination of loading capacity of a direct solar boiler dryer. International Journal of Engineering and Technology, 8, 1386-1396.
Jo, J.-H., Kim, S.-S., Shim, J.-W., Lee, Y.-E., & Yoo, Y.-S. (2017). Pyrolysis characteristics and kinetics of food wastes.
Energies,
10(8), 1191.
https://doi.org/10.3390/en10081191
Kim, B.-S., Kang, C.-N., & Jeong, J.-H. (2014). A study on a high efficiency dryer for food waste. Korean Society for Power System Engineering, 18(6), 153-158. https://doi.org/10.9726/kspse.2014.18.6.153
Liu, Y., Peng, J., Kansha, Y., Ishizuka, M., Tsutsumi, A., Jia, D., . . . Sokhansanj, S. (2014). Novel fluidized bed dryer for biomass drying.
Fuel Processing Technology,
122, 170-175.
https://doi.org/10.1016/j.fuproc.2014.01.036
Lopez, A., Iguaz, A., Esnoz, A., & Virseda, P. (2000). Thin-layer drying behaviour of vegetable wastes from wholesale market.
Drying technology,
18(4-5), 995-1006.
https://doi.org/10.1080/07373930008917749
Meziane, S. (2011). Drying kinetics of olive pomace in a fluidized bed dryer. Energ. Convers. Manage, 52, 1644-1649.
Motevali, A., Abbaszadeh, A., Minaei, S., Khoshtaghaza, M., & Ghobadian, B. (2012). Effective moisture diffusivity, activation energy and energy consumption in thin-layer drying of Jujube (Zizyphus jujube Mill).
Journal of Agricultural Science and Technology,
14(3), 523-532.
https://doi.org/20.1001.1.16807073.2012.14.3.10.4
Nzioka, A. M., Hwang, H. U., Kim, M. G., Troshin, A. G., CaoZheng, Y., & Kim, Y. J. (2016). Experimental investigation of drying process for mixed municipal solid waste: Case study of wastes generated in Nairobi, Kenya.
Int'l Journal of Advances in Agricultural & Environmental Engg.(IJAAEE) Vol,
3(1), 2349-1523.
https://doi.org/10.15242/IJAAEE.ER01160039
Ojediran, J. O., Okonkwo, C. E., Adeyi, A. J., Adeyi, O., Olaniran, A. F., George, N. E., & Olayanju, A. T. (2020). Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: Application of ANFIS in the prediction of drying kinetics.
Heliyon,
6(3).
https://doi.org/10.1016/j.heliyon.2020.e03555
Rostami Baroji, R., Seiiedlou Heris, S., & Dehghannya, J. (2017). Mathematical simulation of heat and mass transfer in convectional drying of carrot, pretreated by ultrasound and microwave.
Journal of Agricultural Machinery,
7(1), 97-113.
https://doi.org/10.22067/jam.v7i1.38881
Shirinbakhsh, M., & Amidpour, M. (2017). Design and optimization of solar-assisted conveyer-belt dryer for biomass. Energy Equipment and Systems, 5(2), 85-94. https://doi.org/10.1016/j.fuproc.2014.01.036
Tahmasebi, M., Tavakkoli Hashjin, T., Khoshtaghaza, M., & Nikbakht, A. (2011). Evaluation of thin-layer drying models for simulation of drying kinetics of quercus (Quercus persica and Quercus libani).
Journal of Agricultural Science and Technology,
13(2), 155-163.
https://doi.org/20.1001.1.16807073.2011.13.2.1.6
Togrul, I. T., & Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal Food Eng, 55, 209–216.
Yaldiz, O., Ertekin, C., & Uzun, H. I. (2001). Mathematical modeling of thin layer solar drying of Sultana grapes. Energy, 26(5), 457-464.