Benbarrad, T., Salhaoui, M., Kenitar, S. B., & Arioua, M. (2021). Intelligent machine vision model for defective product inspection based on machine learning. Journal of Sensor and Actuator Networks, 10(1), 7.
Bezdek, J. C., Hathaway, R. J., Sabin, M. J., & Tucker, W. T. (1987). Convergence theory for fuzzy c-means: counterexamples and repairs. IEEE Transactions on Systems, Man, and Cybernetics, 17(5), 873-877.
Bezdek, J. C., Keller, J., Krisnapuram, R., & Pal, N. (1999). Fuzzy models and algorithms for pattern recognition and image processing (Vol. 4). Springer Science & Business Media.
Chen, Y.-R., Chao, K., & Kim, M. S. (2002). Machine vision technology for agricultural applications. Computers and electronics in agriculture, 36(2-3), 173-191.
Cheng, H.-D., Jiang, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation: advances and prospects. Pattern Recognition, 34(12), 2259-2281.
Grenander, U., & Manbeck, K. M. (1993). A stochastic shape and color model for defect detection in potatoes. Journal of Computational and Graphical Statistics, 2(2), 131-151.
Heinemann, P. H., Pathare, N. P., & Morrow, C. T. (1996). An automated inspection station for machine-vision grading of potatoes. Machine vision and applications, 9(6), 14-19.
Junlong, F., Shuwen, W., & Changli, Z. (2005). Automatic identification and classification of tomatoes with bruise using computer vision. Transactions of the CSAE, 21(8), 98-101.
Leemans, V., Magein, H., & Destain, M.-F. (1998). Defects segmentation on ‘Golden Delicious’ apples by using colour machine vision. Computers and electronics in agriculture, 20(2), 117-130.
Li, Q., Wang, M., & Gu, W. (2002). Computer vision based system for apple surface defect detection. Computers and electronics in agriculture, 36(2-3), 215-223.
Littmann, E., & Ritter, H. (1997). Adaptive color segmentation-a comparison of neural and statistical methods. IEEE Transactions on neural networks, 8(1), 175-185.